BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18330632)

  • 1. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains.
    Sotirova AV; Spasova DI; Galabova DN; Karpenko E; Shulga A
    Curr Microbiol; 2008 Jun; 56(6):639-44. PubMed ID: 18330632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.
    Vasileva-Tonkova E; Sotirova A; Galabova D
    Curr Microbiol; 2011 Feb; 62(2):427-33. PubMed ID: 20680280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa.
    Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D
    Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil.
    Arutchelvi J; Doble M
    Lett Appl Microbiol; 2010 Jul; 51(1):75-82. PubMed ID: 20477962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil.
    Onwosi CO; Odibo FJ
    World J Microbiol Biotechnol; 2012 Mar; 28(3):937-42. PubMed ID: 22805814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions.
    Herman DC; Zhang Y; Miller RM
    Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of outer membrane protein A in the anionic biosurfactant rhamnolipid.
    Andersen KK; Otzen DE
    FEBS Lett; 2014 May; 588(10):1955-60. PubMed ID: 24735722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial desorption in water-saturated porous media in the presence of rhamnolipid biosurfactant.
    Chen G; Qiao M; Zhang H; Zhu H
    Res Microbiol; 2004 Oct; 155(8):655-61. PubMed ID: 15380553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens.
    Abouseoud M; Yataghene A; Amrane A; Maachi R
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1303-8. PubMed ID: 18712561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens.
    Li Y; Sanfilippo JE; Kearns D; Yang JQ
    Microbiol Spectr; 2022 Oct; 10(5):e0323322. PubMed ID: 36214703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different magnetites on properties of magnetic Pseudomonas aeruginosa immobilizates used for biosurfactant production.
    Heyd M; Weigold P; Franzreb M; Berensmeier S
    Biotechnol Prog; 2009; 25(6):1620-9. PubMed ID: 19691121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1.
    Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M
    J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.
    Patowary R; Patowary K; Kalita MC; Deka S
    Appl Biochem Biotechnol; 2016 Oct; 180(3):383-399. PubMed ID: 27142272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosurfactant-rhamnolipid effects on yeast cells.
    Vasileva-Tonkova E; Galabova D; Karpenko E; Shulga A
    Lett Appl Microbiol; 2001 Oct; 33(4):280-4. PubMed ID: 11559401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1).
    Sanjivkumar M; Deivakumari M; Immanuel G
    Arch Microbiol; 2021 Jul; 203(5):2297-2314. PubMed ID: 33646338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of rhamnolipid-biosurfactant-induced changes in bacterial membrane lipids of Bacillus subtilis for the antimicrobial activity of thiosulfonates.
    Sotirova A; Avramova T; Stoitsova S; Lazarkevich I; Lubenets V; Karpenko E; Galabova D
    Curr Microbiol; 2012 Nov; 65(5):534-41. PubMed ID: 22810959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.
    Sharma D; Ansari MJ; Al-Ghamdi A; Adgaba N; Khan KA; Pruthi V; Al-Waili N
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17636-43. PubMed ID: 26146372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.