These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18330701)

  • 1. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity.
    Komuro R; Cheng LK; Pullan AJ
    Ann Biomed Eng; 2008 Jun; 36(6):1049-59. PubMed ID: 18330701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomagnetic detection of gastric electrical activity in normal and vagotomized rabbits.
    Bradshaw LA; Myers AG; Redmond A; Wikswo JP; Richards WO
    Neurogastroenterol Motil; 2003 Oct; 15(5):475-82. PubMed ID: 14507349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.
    Kim JH; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Jan; 38(1):177-86. PubMed ID: 19774463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1355-8. PubMed ID: 22254568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possibilities of the non-invasive electrogastrography.
    Atanassova E; Daskalov I
    Acta Physiol Pharmacol Bulg; 1995; 21(4):105-11. PubMed ID: 8830883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling.
    Newton Price C; Mintchev MP
    J Med Eng Technol; 2002; 26(6):239-46. PubMed ID: 12490029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume conductor effects on simulated magnetogastrograms.
    Qiao W; Komuro R; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4929-32. PubMed ID: 19963870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogastrography: basic knowledge, recording, processing and its clinical applications.
    Chang FY
    J Gastroenterol Hepatol; 2005 Apr; 20(4):502-16. PubMed ID: 15836697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of gastrointestinal tissue structure on computed dipole vectors.
    Austin TM; Li L; Pullan AJ; Cheng LK
    Biomed Eng Online; 2007 Oct; 6():39. PubMed ID: 17953773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of the effect of changing abdominal thickness on the electrogastrogram.
    Mintchev MP; Bowes KL
    Med Eng Phys; 1998 Apr; 20(3):177-81. PubMed ID: 9690487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatio-temporal dipole simulation of gastrointestinal magnetic fields.
    Bradshaw LA; Myers A; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):836-47. PubMed ID: 12848351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Delay Mapping of High-Resolution Gastric Slow-Wave Activity.
    Paskaranandavadivel N; OGrady G; Cheng LK
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):166-172. PubMed ID: 27071158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of gastric electrical activity in health and disease.
    Familoni BO; Abell TL; Bowes KL
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):647-57. PubMed ID: 7622148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artifact reduction in magnetogastrography using fast independent component analysis.
    Irimia A; Bradshaw LA
    Physiol Meas; 2005 Dec; 26(6):1059-73. PubMed ID: 16311453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and computational methods for the noninvasive detection of gastric electrical source coupling.
    Irimia A; Bradshaw LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051920. PubMed ID: 15244860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach.
    Allescher HD; Abraham-Fuchs K; Dunkel RE; Classen M
    Dig Dis Sci; 1998 Apr; 43(4):683-93. PubMed ID: 9558020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical events underlying organized myogenic contractions of the guinea pig stomach.
    Hirst GD; Edwards FR
    J Physiol; 2006 Nov; 576(Pt 3):659-65. PubMed ID: 16873400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.