These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 18330703)

  • 1. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure.
    Krishnan S; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2006 Oct; 34(10):1519-34. PubMed ID: 17013660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of critical parameters in platelet margination.
    Reasor DA; Mehrabadi M; Ku DN; Aidun CK
    Ann Biomed Eng; 2013 Feb; 41(2):238-49. PubMed ID: 22965639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
    Bagchi P; Johnson PC; Popel AS
    J Biomech Eng; 2005 Dec; 127(7):1070-80. PubMed ID: 16502649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cell aggregation as a factor influencing margination and adhesion of leukocytes and platelets.
    Nash GB; Watts T; Thornton C; Barigou M
    Clin Hemorheol Microcirc; 2008; 39(1-4):303-10. PubMed ID: 18503139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution.
    Fogelson AL; Guy RD
    Math Med Biol; 2004 Dec; 21(4):293-334. PubMed ID: 15567887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional simulation of flow and platelet dynamics in the hinge region of a mechanical heart valve.
    Govindarajan V; Udaykumar HS; Chandran KB
    J Biomech Eng; 2009 Mar; 131(3):031002. PubMed ID: 19154061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood.
    Tovar-Lopez FJ; Rosengarten G; Westein E; Khoshmanesh K; Jackson SP; Mitchell A; Nesbitt WS
    Lab Chip; 2010 Feb; 10(3):291-302. PubMed ID: 20091000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates.
    Sarvepalli DP; Schmidtke DW; Nollert MU
    Ann Biomed Eng; 2009 Jul; 37(7):1331-41. PubMed ID: 19440840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid mechanical stress and the platelet.
    Goldsmith HL; Yu SS; Marlow J
    Thromb Diath Haemorrh; 1975 Sep; 34(1):32-41. PubMed ID: 1188727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study on effect of stenosis on primary thrombus formation.
    Kamada H; Tsubota K; Nakamura M; Wada S; Ishikawa T; Yamaguchi T
    Biorheology; 2011; 48(2):99-114. PubMed ID: 21811015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
    Chesnutt JK; Marshall JS
    Microvasc Res; 2009 Dec; 78(3):301-13. PubMed ID: 19766127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet adhesion onto the wall of a flow chamber with an obstacle.
    Lee D; Chiu YL; Jen CJ
    Biorheology; 1997; 34(2):111-26. PubMed ID: 9373394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.