BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18330980)

  • 1. SrAu4In4 and Sr4Au9In13: polar intermetallic structures with cations in augmented hexagonal prismatic environments.
    Palasyuk A; Dai JC; Corbett JD
    Inorg Chem; 2008 Apr; 47(8):3128-34. PubMed ID: 18330980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BaIrIn4 and Ba2Ir4In13: two In-rich polar intermetallic structures with different augmented prismatic environments about the cations.
    Palasyuk AM; Corbett JD
    Inorg Chem; 2008 Oct; 47(20):9344-50. PubMed ID: 18795775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of AeIn4 Indides (Ae=Ba, Sr) into an AeAu2In2 structure type through gold substitution.
    Dai JC; Corbett JD
    Inorg Chem; 2007 May; 46(11):4592-8. PubMed ID: 17439116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar K@Au10Sn10 polyhedra in the markedly different structures of KAu4Sn6 and KAu3Sn3. syntheses and characterization.
    Li B; Corbett JD
    Inorg Chem; 2008 May; 47(9):3610-6. PubMed ID: 18345621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AeMg(5)In(3) (Ae = Ba, Sr): new intermetallic compounds with well-differentiated roles for the normal cation types.
    Li B; Corbett JD
    Inorg Chem; 2007 Mar; 46(6):2237-42. PubMed ID: 17309251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In search of the elusive amalgam SrHg8: a mercury-rich intermetallic compound with augmented pentagonal prisms.
    Tkachuk AV; Mar A
    Dalton Trans; 2010 Aug; 39(30):7132-5. PubMed ID: 20544111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different cation arrangements in Au-In networks. Syntheses and structures of six intermetallic compounds in alkali-metal-Au-In systems.
    Li B; Corbett JD
    Inorg Chem; 2007 Jul; 46(15):6022-8. PubMed ID: 17580937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers.
    Li B; Kim SJ; Miller GJ; Corbett JD
    Inorg Chem; 2009 Dec; 48(23):11108-13. PubMed ID: 19874038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and bonding of Sr3In11: how size and electronic effects determine structural stability of polar intermetallic compounds.
    Amerioun S; Häussermann U
    Inorg Chem; 2003 Dec; 42(24):7782-8. PubMed ID: 14632493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploratory syntheses and structures of SrAu(4.3)In(1.7) and CaAg(3.5)In(1.9): electron-poor intermetallics with diversified polyanionic frameworks that are derived from the CaAu4In2 approximant.
    Lin Q; Corbett JD
    Inorg Chem; 2011 Nov; 50(21):11091-8. PubMed ID: 21988330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel corrugated In9 anionic layer in Li2Y5In9: square pyramidal In5 clusters interconnected by unusual butterfly In4 clusters.
    Sun ZM; Mao JG; Pan DC
    Inorg Chem; 2005 Sep; 44(19):6545-9. PubMed ID: 16156612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel condensation of Au-centered trigonal prisms in rare-earth-metal-rich tellurides: Er7Au2Te2 and Lu7Au2Te2.
    Gupta S; Corbett JD
    Dalton Trans; 2010 Jul; 39(26):6074-9. PubMed ID: 20464015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and structure of Ca(18)Li(5)In(25.07): a novel intergrowth of Li-centered in(12) icosahedral clusters and electron-precise Zintl layers.
    Mao JG; Goodey J; Guloy AM
    Inorg Chem; 2004 Jan; 43(1):282-9. PubMed ID: 14704078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution of Au or Hg into BaTl2 and BaIn2. New ternary examples of smaller CeCu2-type intermetallic phases.
    Dai JC; Corbett JD
    Inorg Chem; 2006 Mar; 45(5):2104-11. PubMed ID: 16499373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold tetrahedra as building blocks in K3Au5Tr (Tr = In, Tl) and Rb2Au3Tl and in other compounds: a broad group of electron-poor intermetallic phases.
    Li B; Kim SJ; Miller GJ; Corbett JD
    Inorg Chem; 2009 Jul; 48(14):6573-83. PubMed ID: 20507109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turning gold into "diamond": a family of hexagonal diamond-type Au-frameworks interconnected by triangular clusters in the Sr-Al-Au system.
    Palasyuk A; Grin Y; Miller GJ
    J Am Chem Soc; 2014 Feb; 136(8):3108-17. PubMed ID: 24483344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three alkali-metal-gold-gallium systems. Ternary tunnel structures and some problems with poorly ordered cations.
    Smetana V; Miller GJ; Corbett JD
    Inorg Chem; 2012 Jul; 51(14):7711-21. PubMed ID: 22738130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca6Cu2Sn7: novel 3D open framework with unusual Sn4 tetramers.
    Sun ZM; Xia SQ; Huang YZ; Wu LM; Mao JG
    Inorg Chem; 2005 Dec; 44(25):9242-6. PubMed ID: 16323905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar intermetallic compounds as catalysts for hydrogenation reactions: synthesis, structures, bonding, and catalytic properties of Ca(1-x)Sr(x)Ni4Sn2 (x=0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2.
    Hlukhyy V; Raif F; Claus P; Fässler TF
    Chemistry; 2008; 14(12):3737-44. PubMed ID: 18288652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of sodium in the bonding of anionic networks: synthesis, structure, and bonding of Na3MIn2 (M = Au, Ag).
    Li B; Corbett JD
    Inorg Chem; 2005 Sep; 44(19):6515-7. PubMed ID: 16156606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.