BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 18331025)

  • 1. Aquation of the ruthenium-based anticancer drug NAMI-A: a density functional study.
    Besker N; Coletti C; Marrone A; Re N
    J Phys Chem B; 2008 Apr; 112(13):3871-5. PubMed ID: 18331025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study on the hydrolysis process of the antimetastatic ruthenium(III) complex NAMI-A.
    Chen J; Chen L; Liao S; Zheng K; Ji L
    J Phys Chem B; 2007 Jul; 111(27):7862-9. PubMed ID: 17579393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations.
    Vargiu AV; Robertazzi A; Magistrato A; Ruggerone P; Carloni P
    J Phys Chem B; 2008 Apr; 112(14):4401-9. PubMed ID: 18348562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Chemical Studies on Detail Mechanism of Nitrosylation of NAMI-A-HSA Adduct.
    Das D; Mondal P
    J Phys Chem B; 2015 Aug; 119(33):10456-65. PubMed ID: 26151453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Appraisal of the redox behaviour of the antimetastatic ruthenium(III) complex [ImH][RuCl(4)(DMSO)(Im)], NAMI-A.
    Ravera M; Baracco S; Cassino C; Zanello P; Osella D
    Dalton Trans; 2004 Aug; (15):2347-51. PubMed ID: 15278129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of ligand-exchange processes and the oxidation state of the antimetastatic Ru(III) complex NAMI-A by interactions with human serum albumin.
    Webb MI; Walsby CJ
    Dalton Trans; 2011 Feb; 40(6):1322-31. PubMed ID: 21210063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study.
    Futera Z; Klenko J; Sponer JE; Sponer J; Burda JV
    J Comput Chem; 2009 Sep; 30(12):1758-70. PubMed ID: 19090568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = imidazole, indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole): aquation, redox properties, protein binding, and antiproliferative activity.
    Groessl M; Reisner E; Hartinger CG; Eichinger R; Semenova O; Timerbaev AR; Jakupec MA; Arion VB; Keppler BK
    J Med Chem; 2007 May; 50(9):2185-93. PubMed ID: 17402720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of spin-orbit coupling on reduction potentials of octahedral ruthenium(II/III) and osmium(II/III) complexes.
    Srnec M; Chalupský J; Fojta M; Zendlová L; Havran L; Hocek M; Kývala M; Rulísek L
    J Am Chem Soc; 2008 Aug; 130(33):10947-54. PubMed ID: 18646850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a ruthenium(III)/NAMI-A adduct with bovine serum albumin that exhibits a high anti-metastatic activity.
    Liu M; Lim ZJ; Gwee YY; Levina A; Lay PA
    Angew Chem Int Ed Engl; 2010 Feb; 49(9):1661-4. PubMed ID: 20127775
    [No Abstract]   [Full Text] [Related]  

  • 11. Ligand exchange reaction involving Ru(III) compounds in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.
    Aguilar CM; Rocha WR
    J Phys Chem B; 2011 Mar; 115(9):2030-7. PubMed ID: 21322626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico evolution of substrate selectivity: comparison of organometallic ruthenium complexes with the anticancer drug cisplatin.
    Deubel DV; Lau JK
    Chem Commun (Camb); 2006 Jun; (23):2451-3. PubMed ID: 16758012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of organometallic ruthenium(II) anticancer compounds to nucleobases: a computational study.
    Gossens C; Tavernelli I; Rothlisberger U
    J Phys Chem A; 2009 Oct; 113(43):11888-97. PubMed ID: 19791792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrolysis process of the anticancer complex [ImH][trans-RuCl4(Im)2]: a theoretical study.
    Chen J; Chen L; Liao S; Zheng K; Ji L
    Dalton Trans; 2007 Aug; (32):3507-15. PubMed ID: 17680040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6-arene)(en)Cl]+ complexes: density functional theory computational study.
    Chval Z; Futera Z; Burda JV
    J Chem Phys; 2011 Jan; 134(2):024520. PubMed ID: 21241133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochromic ruthenium sulfoxide complexes: evidence for isomerization through a conical intersection.
    McClure BA; Mockus NV; Butcher DP; Lutterman DA; Turro C; Petersen JL; Rack JJ
    Inorg Chem; 2009 Sep; 48(17):8084-91. PubMed ID: 19435341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent interactions in a transition-metal triphenylphosphine complex: a density functional case study.
    Sieffert N; Bühl M
    Inorg Chem; 2009 Jun; 48(11):4622-4. PubMed ID: 19382761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical insight on the S --> O photoisomerization of DMSO complexes of Ru(II).
    Lutterman DA; Rachford AA; Rack JJ; Turro C
    J Phys Chem A; 2009 Oct; 113(41):11002-6. PubMed ID: 19761198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction mechanism and stereoselectivity of ruthenium--porphyrin-catalyzed intramolecular amidation of sulfamate ester: a DFT computational study.
    Lin X; Che CM; Phillips DL
    J Org Chem; 2008 Jan; 73(2):529-37. PubMed ID: 18092803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme.
    Messori L; Merlino A
    Dalton Trans; 2014 Apr; 43(16):6128-31. PubMed ID: 24553967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.