These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 18331046)
1. Realization of anti-SN2' selective allylation of 4-cyclopentene-1,3-diol monoester with aryl- and alkenyl-zinc reagents. Nakata K; Kiyotsuka Y; Kitazume T; Kobayashi Y Org Lett; 2008 Apr; 10(7):1345-8. PubMed ID: 18331046 [TBL] [Abstract][Full Text] [Related]
2. New reagent system for attaining high regio- and stereoselectivities in allylic displacement of 4-cyclopentene-1,3-diol monoacetate with aryl- and alkenylmagnesium bromides. Kobayashi Y; Nakata K; Ainai T Org Lett; 2005 Jan; 7(2):183-6. PubMed ID: 15646953 [TBL] [Abstract][Full Text] [Related]
3. Picolinoxy group, a new leaving group for anti SN2' selective allylic substitution with aryl anions based on Grignard reagents. Kiyotsuka Y; Acharya HP; Katayama Y; Hyodo T; Kobayashi Y Org Lett; 2008 May; 10(9):1719-22. PubMed ID: 18396885 [TBL] [Abstract][Full Text] [Related]
4. Highly stereoselective synthesis of aristeromycin through dihydroxylation of 4-aryl-1-azido-2-cyclopentenes. Ainai T; Wang YG; Tokoro Y; Kobayashi Y J Org Chem; 2004 Feb; 69(3):655-9. PubMed ID: 14750788 [TBL] [Abstract][Full Text] [Related]
5. 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility. Taber DF; Joshi PV; Kanai K J Org Chem; 2004 Apr; 69(7):2268-71. PubMed ID: 15049618 [TBL] [Abstract][Full Text] [Related]
6. A new method for installation of aryl and alkenyl groups onto a cyclopentene ring and synthesis of prostaglandins. Kobayashi Y; Murugesh MG; Nakano M; Takahisa E; Usmani SB; Ainai T J Org Chem; 2002 Oct; 67(20):7110-23. PubMed ID: 12354006 [TBL] [Abstract][Full Text] [Related]
7. Highly stereoselective synthesis of (1E)-2-methyl-1,3-dienes by palladium-catalyzed trans-selective cross-coupling of 1,1-dibromo-1-alkenes with alkenylzinc reagents. Zeng X; Qian M; Hu Q; Negishi E Angew Chem Int Ed Engl; 2004 Apr; 43(17):2259-63. PubMed ID: 15108138 [No Abstract] [Full Text] [Related]
8. Preparation of substituted cyclopentadienes through platinum(II)-catalyzed cyclization of 1,2,4-trienes. Funami H; Kusama H; Iwasawa N Angew Chem Int Ed Engl; 2007; 46(6):909-11. PubMed ID: 17177221 [No Abstract] [Full Text] [Related]
9. Synthesis of Cp-Re complexes via olefinic C-H activation and successive formation of cyclopentadienes. Kuninobu Y; Nishina Y; Matsuki T; Takai K J Am Chem Soc; 2008 Oct; 130(43):14062-3. PubMed ID: 18826218 [TBL] [Abstract][Full Text] [Related]
10. The use of fluoride as a leaving group: SN2' displacement of a C-F bond on 3,3-difluoropropenes with organolithium reagents to give direct access to monofluoroalkenes. Bergeron M; Johnson T; Paquin JF Angew Chem Int Ed Engl; 2011 Nov; 50(47):11112-6. PubMed ID: 21956866 [No Abstract] [Full Text] [Related]
11. Catalyst-free synthesis of skipped dienes from phosphorus ylides, allylic carbonates, and aldehydes via a one-pot SN2' allylation-Wittig strategy. Xu S; Zhu S; Shang J; Zhang J; Tang Y; Dou J J Org Chem; 2014 Apr; 79(8):3696-703. PubMed ID: 24661220 [TBL] [Abstract][Full Text] [Related]
12. Convenient route to both enantiomers of a highly functionalized trans-disubstituted cyclopentene. Synthesis of the carbocyclic core of the nucleoside BCA. Banerjee S; Ghosh S; Sinha S; Ghosh S J Org Chem; 2005 May; 70(10):4199-202. PubMed ID: 15876120 [TBL] [Abstract][Full Text] [Related]
13. Unprecedented rearrangement of a 4-alkoxy-5-bromoalk-2-en-1-ol to a cyclopentenone via an iso-nazarov cyclization process. Jung ME; Yoo D J Org Chem; 2007 Oct; 72(22):8565-8. PubMed ID: 17910498 [TBL] [Abstract][Full Text] [Related]
14. Application of the semi-pinacol rearrangement towards the generation of alkenyl-substituted quaternary carbon centres. Snape TJ Org Biomol Chem; 2006 Nov; 4(22):4144-8. PubMed ID: 17312970 [TBL] [Abstract][Full Text] [Related]
15. Stereoselective synthetic approaches to highly substituted cyclopentanes via electrophilic additions to mono-, di-, and trisubstituted cyclopentenes. Clark MA; Goering BK; Li J; Ganem B J Org Chem; 2000 Jun; 65(13):4058-69. PubMed ID: 10866624 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy. Negishi E; Huang Z; Wang G; Mohan S; Wang C; Hattori H Acc Chem Res; 2008 Nov; 41(11):1474-85. PubMed ID: 18783256 [TBL] [Abstract][Full Text] [Related]
17. Practical enantiospecific synthesis of an orthogonally protected 1,4-trans-1,5-cis- 4,5-diamino-2-cyclopenten-1-ol derivative. Wang B J Org Chem; 2010 Sep; 75(17):6012-5. PubMed ID: 20690776 [TBL] [Abstract][Full Text] [Related]
18. Palladium-catalyzed reaction of 4-cyclopentene-1,3-diol monoacetate with Grignard reagents producing hitherto unreachable cis-1,2-isomers. Hattori H; Abbas AA; Kobayashi Y Chem Commun (Camb); 2004 Apr; (7):884-5. PubMed ID: 15045112 [TBL] [Abstract][Full Text] [Related]
19. A new synthetic route to nucleosides: dissymmetric construction of a cyclopentene system by double [3,3]-sigmatropic rearrangement and double ring-closing metathesis. Fang Z; Hong JH Org Lett; 2004 Mar; 6(6):993-5. PubMed ID: 15012083 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric synthesis of carboxylic acid derivatives having an all-carbon alpha-quaternary center through Cu-catalyzed 1,4-addition of dialkylzinc reagents to 2-aryl acetate derivatives. Wilsily A; Fillion E Org Lett; 2008 Jul; 10(13):2801-4. PubMed ID: 18510334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]