These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 18331050)
1. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Kaimoyo E; Farag MA; Sumner LW; Wasmann C; Cuello JL; VanEtten H Biotechnol Prog; 2008; 24(2):377-84. PubMed ID: 18331050 [TBL] [Abstract][Full Text] [Related]
2. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Wu Q; VanEtten HD Mol Plant Microbe Interact; 2004 Jul; 17(7):798-804. PubMed ID: 15242174 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Kaimoyo E; VanEtten HD Phytochemistry; 2008 Jan; 69(1):76-87. PubMed ID: 17707445 [TBL] [Abstract][Full Text] [Related]
4. (+)-Pisatin biosynthesis: from (-) enantiomeric intermediates via an achiral 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene. Celoy RM; VanEtten HD Phytochemistry; 2014 Feb; 98():120-7. PubMed ID: 24332213 [TBL] [Abstract][Full Text] [Related]
5. Studies on the late steps of (+) pisatin biosynthesis: evidence for (-) enantiomeric intermediates. DiCenzo GL; VanEtten HD Phytochemistry; 2006 Apr; 67(7):675-83. PubMed ID: 16504226 [TBL] [Abstract][Full Text] [Related]
6. Elicitor-enhanced steroidal sapogenin accumulation in hairy root cultures of Trigonella foenum-graecum. Rezazadehfar P; Rezayian M; Niknam V; Mirmasoumi M Sci Rep; 2024 Aug; 14(1):19106. PubMed ID: 39154043 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation. Woźniak A; Drzewiecka K; Kęsy J; Marczak Ł; Narożna D; Grobela M; Motała R; Bocianowski J; Morkunas I Molecules; 2017 Aug; 22(9):. PubMed ID: 28837107 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Liu CJ; Deavours BE; Richard SB; Ferrer JL; Blount JW; Huhman D; Dixon RA; Noel JP Plant Cell; 2006 Dec; 18(12):3656-69. PubMed ID: 17172354 [TBL] [Abstract][Full Text] [Related]
9. A simple method for creating transgenic pea hairy roots using a Japanese pea cultivar and a Japanese Uchida K; Yokota Hirai M Plant Biotechnol (Tokyo); 2023 Mar; 40(1):113-116. PubMed ID: 38213929 [TBL] [Abstract][Full Text] [Related]
10. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Halder M; Sarkar S; Jha S Eng Life Sci; 2019 Dec; 19(12):880-895. PubMed ID: 32624980 [TBL] [Abstract][Full Text] [Related]
11. LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Arman M Nat Prod Res; 2011 Aug; 25(14):1352-60. PubMed ID: 21859260 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of the diosgenin biosynthesis pathway in Trigonella foenum-graceum hairy root cultures. Nasiri A; Rashidi-Monfared S; Ebrahimi A; Falahi Charkhabi N; Moieni A Plant Sci; 2022 Oct; 323():111410. PubMed ID: 35944746 [TBL] [Abstract][Full Text] [Related]
13. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas. Hadwiger LA; Tanaka K Molecules; 2014 Dec; 20(1):24-34. PubMed ID: 25546618 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and biochemical characterization of isoflav-3-ene synthase, a key enzyme of the biosyntheses of (+)-pisatin and coumestrol. Uchida K; Aoki T; Suzuki H; Akashi T Plant Biotechnol (Tokyo); 2020 Sep; 37(3):301-310. PubMed ID: 33088193 [TBL] [Abstract][Full Text] [Related]
15. Isolation and identification of an allelopathic substance in Pisum sativum. Kato-Noguchi H Phytochemistry; 2003 Apr; 62(7):1141-4. PubMed ID: 12591269 [TBL] [Abstract][Full Text] [Related]
16. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Alcalde MA; Perez-Matas E; Escrich A; Cusido RM; Palazon J; Bonfill M Molecules; 2022 Aug; 27(16):. PubMed ID: 36014492 [TBL] [Abstract][Full Text] [Related]
17. Hairy root culture for mass-production of high-value secondary metabolites. Srivastava S; Srivastava AK Crit Rev Biotechnol; 2007; 27(1):29-43. PubMed ID: 17364688 [TBL] [Abstract][Full Text] [Related]
18. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. Jahan MA; Harris B; Lowery M; Coburn K; Infante AM; Percifield RJ; Ammer AG; Kovinich N BMC Genomics; 2019 Feb; 20(1):149. PubMed ID: 30786857 [TBL] [Abstract][Full Text] [Related]
19. Isoflavone production in hairy root cultures and plantlets of Trifolium pratense. Reis A; Boutet-Mercey S; Massot S; Ratet P; Zuanazzi JAS Biotechnol Lett; 2019 Mar; 41(3):427-442. PubMed ID: 30661155 [TBL] [Abstract][Full Text] [Related]
20. Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Walker-Simmons M; Hadwiger L; Ryan CA Biochem Biophys Res Commun; 1983 Jan; 110(1):194-9. PubMed ID: 6838509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]