These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 18331361)
1. Growth of the lens: in vitro observations. Augusteyn RC Clin Exp Optom; 2008 May; 91(3):226-39. PubMed ID: 18331361 [TBL] [Abstract][Full Text] [Related]
2. Growth of the human eye lens. Augusteyn RC Mol Vis; 2007 Feb; 13():252-7. PubMed ID: 17356512 [TBL] [Abstract][Full Text] [Related]
3. Presbyopia and cataract: a question of heat and time. Truscott RJ; Zhu X Prog Retin Eye Res; 2010 Nov; 29(6):487-99. PubMed ID: 20472092 [TBL] [Abstract][Full Text] [Related]
4. Growth of the human lens in the Indian adult population: preliminary observations. Mohamed A; Sangwan VS; Augusteyn RC Indian J Ophthalmol; 2012; 60(6):511-5. PubMed ID: 23202388 [TBL] [Abstract][Full Text] [Related]
5. On the relationship between rabbit age and lens dry weight: improved determination of the age of rabbits in the wild. Augusteyn RC Mol Vis; 2007 Oct; 13():2030-4. PubMed ID: 17982428 [TBL] [Abstract][Full Text] [Related]
6. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Heys KR; Cram SL; Truscott RJ Mol Vis; 2004 Dec; 10():956-63. PubMed ID: 15616482 [TBL] [Abstract][Full Text] [Related]
8. Change in the accommodative force on the lens of the human eye with age. Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980 [TBL] [Abstract][Full Text] [Related]
9. In vitro dimensions and curvatures of human lenses. Rosen AM; Denham DB; Fernandez V; Borja D; Ho A; Manns F; Parel JM; Augusteyn RC Vision Res; 2006 Mar; 46(6-7):1002-9. PubMed ID: 16321421 [TBL] [Abstract][Full Text] [Related]
11. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus. Koretz JF; Cook CA; Kaufman PL Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):569-78. PubMed ID: 9071209 [TBL] [Abstract][Full Text] [Related]
12. Relation between injected volume and optical parameters in refilled isolated porcine lenses. Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485 [TBL] [Abstract][Full Text] [Related]
13. The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures. Gilmartin B Ophthalmic Physiol Opt; 1995 Sep; 15(5):431-7. PubMed ID: 8524570 [TBL] [Abstract][Full Text] [Related]
14. Comparative investigations on water-soluble crystallins of the embryonic, fetal, and postnatal human lens during development and ageing. Trifonova N; Stamenova M; Boulanov I; Goranov M; Bours J Ger J Ophthalmol; 1996 Nov; 5(6):454-60. PubMed ID: 9479536 [TBL] [Abstract][Full Text] [Related]
15. Equatorial lens growth predicts the age-related decline in accommodative amplitude that results in presbyopia and the increase in intraocular pressure that occurs with age. Schachar RA Int Ophthalmol Clin; 2008; 48(1):1-8. PubMed ID: 18209552 [No Abstract] [Full Text] [Related]
16. The mechanical response of the porcine lens to a spinning test. Reilly MA; Martius P; Kumar S; Burd HJ; Stachs O Z Med Phys; 2016 Jun; 26(2):127-35. PubMed ID: 26777319 [TBL] [Abstract][Full Text] [Related]
18. Growth related changes to functional parameters in the bovine lens. Pierscionek BK; Augusteyn RC Biochim Biophys Acta; 1992 Jun; 1116(3):283-90. PubMed ID: 1610885 [TBL] [Abstract][Full Text] [Related]
19. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia. Reilly MA Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408 [TBL] [Abstract][Full Text] [Related]
20. Age-related changes in the kinetics of water transport in normal human lenses. Moffat BA; Landman KA; Truscott RJ; Sweeney MH; Pope JM Exp Eye Res; 1999 Dec; 69(6):663-9. PubMed ID: 10620395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]