BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

865 related articles for article (PubMed ID: 18331397)

  • 1. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells.
    Mir Y; van Lier JE; Paquette B; Houde D
    Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon absorption of copper tetrasulfophthalocyanine induces phototoxicity towards Jurkat cells in vitro.
    Mir Y; Houde D; van Lier JE
    Photochem Photobiol Sci; 2006 Nov; 5(11):1024-30. PubMed ID: 17077898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine.
    Kolarova H; Nevrelova P; Bajgar R; Jirova D; Kejlova K; Strnad M
    Toxicol In Vitro; 2007 Mar; 21(2):249-53. PubMed ID: 17092686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of photobleaching in photodynamic therapy using the photodecarbonylation reaction of ruthenium phthalocyanine complexes via stepwise two-photon excitation.
    Ishii K; Shiine M; Shimizu Y; Hoshino S; Abe H; Sogawa K; Kobayashi N
    J Phys Chem B; 2008 Mar; 112(10):3138-43. PubMed ID: 18284227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of zinc phthalocyanine-mediated photodynamic therapy on bone marrow purging, an experimental study].
    Huang HF; Chen YZ; Wu Y
    Zhonghua Yi Xue Za Zhi; 2003 Jun; 83(11):986-91. PubMed ID: 12899802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic modification of disulfonated aluminium phthalocyanine fluorescence in a macrophage cell line.
    Kunz L; Connelly JP; Woodhams JH; MacRobert AJ
    Photochem Photobiol Sci; 2007 Sep; 6(9):940-8. PubMed ID: 17721592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy.
    Karotki A; Khurana M; Lepock JR; Wilson BC
    Photochem Photobiol; 2006; 82(2):443-52. PubMed ID: 16613497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic effects of ZnPcS(4)-BSA in human retinal pigment epithelium cells.
    Huang Y; Xu G; Peng Y; Chen S; Wu Y
    J Ocul Pharmacol Ther; 2009 Jun; 25(3):231-8. PubMed ID: 19456258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc phthalocyanine tetrasulfonate (ZnPcS4): a new photosensitizer for photodynamic therapy in choroidal neovascularization.
    Huang Y; Xu G; Peng Y; Lin H; Zheng X; Xie M
    J Ocul Pharmacol Ther; 2007 Aug; 23(4):377-86. PubMed ID: 17803437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of biological substrates on the ultrafast excited-state dynamics of zinc phthalocyanine tetrasulfonate in solution.
    Howe L; Zhang JZ
    Photochem Photobiol; 1998 Jan; 67(1):90-6. PubMed ID: 9477767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low-density lipoproteins: implications for photodynamic therapy.
    Martins J; Almeida L; Laranjinha J
    Photochem Photobiol; 2004; 80(2):267-73. PubMed ID: 15362945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase I clinical trial of the use of zinc phthalocyanine tetrasulfonate as a photosensitizer for photodynamic therapy in dogs.
    Borgatti-Jeffreys A; Hooser SB; Miller MA; Lucroy MD
    Am J Vet Res; 2007 Apr; 68(4):399-404. PubMed ID: 17397295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calpains are activated by photodynamic therapy but do not contribute to apoptotic tumor cell death.
    Almeida RD; Gomes ER; Carvalho AP; Duarte CB
    Cancer Lett; 2004 Dec; 216(2):183-9. PubMed ID: 15533594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4.
    Xue LY; Chiu SM; Oleinick NL
    Oncogene; 2001 Jun; 20(26):3420-7. PubMed ID: 11423992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy.
    Maduray K; Karsten A; Odhav B; Nyokong T
    J Photochem Photobiol B; 2011 May; 103(2):98-104. PubMed ID: 21367615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of molecular oxygen in the photodynamic effect of phthalocyanines.
    Rosenthal I; Murali Krishna C; Riesz P; Ben-Hur E
    Radiat Res; 1986 Jul; 107(1):136-42. PubMed ID: 3737875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamic inhibition of acetylcholinesterase after two-photon excitation of copper tetrasulfophthalocyanine.
    Mir Y; Houde D; van Lier JE
    Lasers Med Sci; 2008 Jan; 23(1):19-25. PubMed ID: 17384975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer.
    Hodgkinson N; Kruger CA; Mokwena M; Abrahamse H
    J Photochem Photobiol B; 2017 Dec; 177():32-38. PubMed ID: 29045918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the photochemical and photocytotoxic properties of the new PDT photosensitizer aluminum sulfonated phthalocyanine.
    Chen JY; Xie R; Chen SM; Lu FD; Chen KT; Cai HX
    Cancer Biochem Biophys; 1991 Aug; 12(2):103-16. PubMed ID: 1837493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis.
    Gupta S; Ahmad N; Mukhtar H
    Cancer Res; 1998 May; 58(9):1785-8. PubMed ID: 9581812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.