BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18331489)

  • 1. Controlling the plasmon resonance of single metal nanoparticles by near-field anisotropic nanoscale photopolymerization.
    Ibn-El-Ahrach H; Bachelot R; Lérondel G; Vial A; Grimault AS; Plain J; Royer P; Soppera O
    J Microsc; 2008 Mar; 229(Pt 3):421-7. PubMed ID: 18331489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization.
    El Ahrach HI; Bachelot R; Vial A; Lérondel G; Plain J; Royer P; Soppera O
    Phys Rev Lett; 2007 Mar; 98(10):107402. PubMed ID: 17358565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots.
    Guerrini L; Izquierdo-Lorenzo I; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Phys Chem Chem Phys; 2009 Sep; 11(34):7363-71. PubMed ID: 19690707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates.
    Shen XS; Wang GZ; Hong X; Zhu W
    Phys Chem Chem Phys; 2009 Sep; 11(34):7450-4. PubMed ID: 19690718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes.
    Deeb C; Ecoffet C; Bachelot R; Plain J; Bouhelier A; Soppera O
    J Am Chem Soc; 2011 Jul; 133(27):10535-42. PubMed ID: 21618982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced form birefringence of metal nanoparticles with anisotropic shell mediated by localized surface plasmon resonance.
    Murai S; Tsujiguchi T; Fujita K; Tanaka K
    Opt Express; 2011 Nov; 19(23):23581-9. PubMed ID: 22109238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitive gold-nanoparticle-embedded dielectric nanowires.
    Hu MS; Chen HL; Shen CH; Hong LS; Huang BR; Chen KH; Chen LC
    Nat Mater; 2006 Feb; 5(2):102-6. PubMed ID: 16429142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of spectral anisotropy of gold nanoparticles.
    Cang H; Montiel D; Xu CS; Yang H
    J Chem Phys; 2008 Jul; 129(4):044503. PubMed ID: 18681656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angle dependent collective surface plasmon resonance in an array of silver nanoparticles.
    Pinchuk AO
    J Phys Chem A; 2009 Apr; 113(16):4430-6. PubMed ID: 19284781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal based synthesis of silver nanoparticles--an effect of temperature on the size of particles.
    Mohammed Fayaz A; Balaji K; Kalaichelvan PT; Venkatesan R
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):123-6. PubMed ID: 19674875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays.
    Malynych S; Chumanov G
    J Am Chem Soc; 2003 Mar; 125(10):2896-8. PubMed ID: 12617655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the linear response and scattering of an interacting molecule-metal system.
    Masiello DJ; Schatz GC
    J Chem Phys; 2010 Feb; 132(6):064102. PubMed ID: 20151728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.
    Kim JH; Bryan WW; Lee TR
    Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles.
    Mitsuishi M; Koishikawa Y; Tanaka H; Sato E; Mikayama T; Matsui J; Miyashita T
    Langmuir; 2007 Jul; 23(14):7472-4. PubMed ID: 17530874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.