BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18331599)

  • 21. Clusterin expression in cutaneous CD30-positive lymphoproliferative disorders and their histologic simulants.
    Olsen SH; Ma L; Schnitzer B; Fullen DR
    J Cutan Pathol; 2009 Mar; 36(3):302-7. PubMed ID: 19220628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fascin expression in CD30-positive cutaneous lymphoproliferative disorders.
    Kempf W; Levi E; Kamarashev J; Kutzner H; Pfeifer W; Petrogiannis-Haliotis T; Burg G; Kadin ME
    J Cutan Pathol; 2002 May; 29(5):295-300. PubMed ID: 12100631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The spectrum of primary mucosal CD30-positive T-cell lymphoproliferative disorders of the head and neck.
    Wang W; Cai Y; Sheng W; Lu H; Li X
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2014 Jan; 117(1):96-104. PubMed ID: 24332333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathobiology of CD30+ cutaneous T-cell lymphomas.
    Kadin ME
    J Cutan Pathol; 2006 Feb; 33 Suppl 1():10-7. PubMed ID: 16412208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CD30 positive anaplastic large-cell lymphoma mimicking Langerhans cell histiocytosis.
    Ezra N; Van Dyke GS; Binder SW
    J Cutan Pathol; 2010 Jul; 37(7):787-92. PubMed ID: 19817947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of liver-targeted regulatory T cells in hepatitis B and C virus in chronically infected patients.
    Miyaaki H; Zhou H; Ichikawa T; Nakao K; Shibata H; Takeshita S; Akiyama M; Ozawa E; Miuma S; Eguchi K
    Liver Int; 2009 May; 29(5):702-7. PubMed ID: 18673437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner.
    Hsu FY; Johnston PB; Burke KA; Zhao Y
    Cancer Res; 2006 Sep; 66(18):9002-8. PubMed ID: 16982741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary cutaneous CD30+ lymphoproliferative disorder--a 10-year follow-up. A case report and differential diagnosis.
    Szpor J; Dyduch G; Gałazka K; Bahyrycz J; Stój A; Tomaszewska R
    Pol J Pathol; 2009; 60(1):43-8. PubMed ID: 19670703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary cutaneous T-cell lymphoma expressing FOXP3: a case report supporting the existence of malignancies of regulatory T cells.
    Marzano AV; Vezzoli P; Fanoni D; Venegoni L; Berti E
    J Am Acad Dermatol; 2009 Aug; 61(2):348-55. PubMed ID: 19615546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of primary cutaneous CD8+/CD30+ lymphoproliferative disorders.
    Martires KJ; Ra S; Abdulla F; Cassarino DS
    Am J Dermatopathol; 2015 Nov; 37(11):822-33. PubMed ID: 26485239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profiles of Foxp3+ regulatory T cells in eczematous dermatitis, psoriasis vulgaris and mycosis fungoides.
    Fujimura T; Okuyama R; Ito Y; Aiba S
    Br J Dermatol; 2008 Jun; 158(6):1256-63. PubMed ID: 18363755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The significance of MUM1/IRF4 protein expression and IRF4 translocation of CD30(+) cutaneous T-cell lymphoproliferative disorders: a study of 53 cases.
    Kiran T; Demirkesen C; Eker C; Kumusoglu H; Tuzuner N
    Leuk Res; 2013 Apr; 37(4):396-400. PubMed ID: 23332472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequent expression of CD30 antigen in the primary gastric non-B, non-Hodgkin lymphomas.
    Iwamizu-Watanabe S; Yamashita Y; Yatabe Y; Nakamura S; Mori N
    Pathol Int; 2004 Jul; 54(7):503-9. PubMed ID: 15189504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The number of tumour-infiltrating TIA-1+ cytotoxic T cells but not FOXP3+ regulatory T cells predicts outcome in diffuse large B-cell lymphoma.
    Hasselblom S; Sigurdadottir M; Hansson U; Nilsson-Ehle H; Ridell B; Andersson PO
    Br J Haematol; 2007 May; 137(4):364-73. PubMed ID: 17456059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue.
    Chaput N; Louafi S; Bardier A; Charlotte F; Vaillant JC; Ménégaux F; Rosenzwajg M; Lemoine F; Klatzmann D; Taieb J
    Gut; 2009 Apr; 58(4):520-9. PubMed ID: 19022917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinicopathologic and microenvironmental analysis of primary cutaneous CD30-positive lymphoproliferative disorders: a 26 year experience from an academic medical center in Brazil.
    Ferreira CR; Zhao S; Sanches JA; Miyashiro D; Cury-Martins J; Azevedo RS; Zerbini MCN; Natkunam Y; Gratzinger D
    Diagn Pathol; 2019 Oct; 14(1):115. PubMed ID: 31640798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large CD30-positive cells in benign, atypical lymphoid infiltrates of the skin.
    Werner B; Massone C; Kerl H; Cerroni L
    J Cutan Pathol; 2008 Dec; 35(12):1100-7. PubMed ID: 18616762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. N-Ras or K-Ras inhibition increases the number and enhances the function of Foxp3 regulatory T cells.
    Mor A; Keren G; Kloog Y; George J
    Eur J Immunol; 2008 Jun; 38(6):1493-502. PubMed ID: 18461565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer.
    Giatromanolaki A; Bates GJ; Koukourakis MI; Sivridis E; Gatter KC; Harris AL; Banham AH
    Gynecol Oncol; 2008 Aug; 110(2):216-21. PubMed ID: 18533240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foxp3 expression on normal and leukemic CD4+CD25+ T cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells.
    Abe M; Uchihashi K; Kazuto T; Osaka A; Yanagihara K; Tsukasaki K; Hasegawa H; Yamada Y; Kamihira S
    Eur J Haematol; 2008 Sep; 81(3):209-17. PubMed ID: 18510697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.