BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18331897)

  • 1. Calcium-binding proteins label functional streams of the visual system in a songbird.
    Heyers D; Manns M; Luksch H; Güntürkün O; Mouritsen H
    Brain Res Bull; 2008 Mar; 75(2-4):348-55. PubMed ID: 18331897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling.
    Bazwinsky I; Härtig W; Rübsamen R
    J Chem Neuroanat; 2008 Jan; 35(1):158-74. PubMed ID: 18065198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus).
    Johnson JK; Casagrande VA
    J Comp Neurol; 1995 May; 356(2):238-60. PubMed ID: 7629317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-binding proteins define interneurons in HVC of the zebra finch (Taeniopygia guttata).
    Wild JM; Williams MN; Howie GJ; Mooney R
    J Comp Neurol; 2005 Feb; 483(1):76-90. PubMed ID: 15672397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calretinin-, neurocalcin-, and parvalbumin-immunoreactive elements in the olfactory bulb of the hedgehog (Erinaceus europaeus).
    Briñón JG; Weruaga E; Crespo C; Porteros A; Arévalo R; Aijón J; Alonso JR
    J Comp Neurol; 2001 Jan; 429(4):554-70. PubMed ID: 11135235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular dystrophy: selective changes in the sensorimotor cortex.
    Carretta D; Santarelli M; Vanni D; Ciabatti S; Sbriccoli A; Pinto F; Minciacchi D
    J Comp Neurol; 2003 Jan; 456(1):48-59. PubMed ID: 12508313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord.
    Anelli R; Heckman CJ
    J Neurocytol; 2005 Dec; 34(6):369-85. PubMed ID: 16902759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term neurochemical changes after visual cortical lesions in the adult cat.
    Huxlin KR; Pasternak T
    J Comp Neurol; 2001 Jan; 429(2):221-41. PubMed ID: 11116216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates.
    Chiquet C; Dkhissi-Benyahya O; Cooper HM
    Brain Res Bull; 2005 Dec; 68(3):185-94. PubMed ID: 16325019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex.
    Dávila JC; Real MA; Olmos L; Legaz I; Medina L; Guirado S
    J Comp Neurol; 2005 Jan; 481(1):42-57. PubMed ID: 15558732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visually-induced NGFI-A protein expression in the calbindin-, parvalbumin- and nitric oxide synthase-neuronal populations of the rat superior colliculus.
    Giraldi-Guimarães A; Mendez-Otero R
    J Chem Neuroanat; 2005 May; 29(3):209-16. PubMed ID: 15820622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the diencephalic relay structures of the visual thalamofugal system in pigeons.
    Manns M; Freund N; Güntürkün O
    Brain Res Bull; 2008 Mar; 75(2-4):424-7. PubMed ID: 18331910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Definition and connections of the entopallium in the zebra finch (Taeniopygia guttata).
    Krützfeldt NO; Wild JM
    J Comp Neurol; 2004 Jan; 468(3):452-65. PubMed ID: 14681937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axotomy induces contrasting changes in calcium and calcium-binding proteins in oculomotor and hypoglossal nuclei of Balb/c mice.
    Obál I; Engelhardt JI; Siklós L
    J Comp Neurol; 2006 Nov; 499(1):17-32. PubMed ID: 16958104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of ocular BDNF-injections onto the development of tectal cells characterized by calcium-binding proteins in pigeons.
    Manns M; Güntürkün O
    Brain Res Bull; 2005 Sep; 66(4-6):475-8. PubMed ID: 16144635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-binding proteins in the circadian centers of the common marmoset (Callithrix jacchus) and the rock cavy (Kerodon rupestris) brains.
    Cavalcante JS; Britto LR; Toledo CA; Nascimento ES; Lima RR; Pontes AL; Costa MS
    Brain Res Bull; 2008 Jul; 76(4):354-60. PubMed ID: 18502310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-occurrence of calcium-binding proteins and calcium-permeable glutamate receptors in the primary gustatory nucleus of goldfish.
    Ikenaga T; Huesa G; Finger TE
    J Comp Neurol; 2006 Nov; 499(1):90-105. PubMed ID: 16958099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence and distribution of three calcium binding proteins in projection neurons of the adult rat cochlear nucleus.
    Pór A; Pocsai K; Rusznák Z; Szucs G
    Brain Res; 2005 Mar; 1039(1-2):63-74. PubMed ID: 15781047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation.
    Chaudhury S; Nag TC; Wadhwa S
    Brain Res; 2008 Jan; 1191():96-106. PubMed ID: 18096144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus.
    Chaudhury S; Nag TC; Wadhwa S
    J Chem Neuroanat; 2006 Dec; 32(2-4):117-26. PubMed ID: 16962286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.