These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18331977)

  • 1. Influence of epidermal hydration on the friction of human skin against textiles.
    Gerhardt LC; Strässle V; Lenz A; Spencer ND; Derler S
    J R Soc Interface; 2008 Nov; 5(28):1317-28. PubMed ID: 18331977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin-textile friction and skin elasticity in young and aged persons.
    Gerhardt LC; Lenz A; Spencer ND; Münzer T; Derler S
    Skin Res Technol; 2009 Aug; 15(3):288-98. PubMed ID: 19624425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.
    Baby R; Mathur K; DenHartog E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4652-4664. PubMed ID: 33428371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of humidity on skin friction against medical textiles as related to prevention of pressure injuries.
    Schwartz D; Magen YK; Levy A; Gefen A
    Int Wound J; 2018 Dec; 15(6):866-874. PubMed ID: 29797409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of skin-fabric interactions of relevance to decubitus: friction and contact-pressure measurements.
    Gerhardt LC; Mattle N; Schrade GU; Spencer ND; Derler S
    Skin Res Technol; 2008 Feb; 14(1):77-88. PubMed ID: 18211605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tribological investigation of a functional medical textile with lubricating drug-delivery finishing.
    Gerhardt LC; Lottenbach R; Rossi RM; Derler S
    Colloids Surf B Biointerfaces; 2013 Aug; 108():103-9. PubMed ID: 23524083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic contact area and friction between medical textiles and skin.
    Derler S; Rotaru GM; Ke W; El Issawi-Frischknecht L; Kellenberger P; Scheel-Sailer A; Rossi RM
    J Mech Behav Biomed Mater; 2014 Oct; 38():114-25. PubMed ID: 25047353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the Human Stickiness Perception of Wet Fabric on the Volar Forearm via Two Contact Modes: Friction and Adhesion-Separation.
    Jiang R; Wang Y
    Perception; 2020 Dec; 49(12):1311-1332. PubMed ID: 33302776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multivariable model for predicting the frictional behaviour and hydration of the human skin.
    Veijgen NK; van der Heide E; Masen MA
    Skin Res Technol; 2013 Aug; 19(3):330-8. PubMed ID: 23441726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a new method for measuring friction between skin and nonwoven materials.
    Cottenden AM; Wong WK; Cottenden DJ; Farbrot A
    Proc Inst Mech Eng H; 2008 Jul; 222(5):791-803. PubMed ID: 18756696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study of friction between volar forearm skin and nonwoven fabrics used in disposable absorbent products for incontinence.
    Falloon SS; Asimakopoulos V; Cottenden AM
    Proc Inst Mech Eng H; 2019 Jan; 233(1):35-47. PubMed ID: 30340442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of dynamic friction with wet fabrics on skin wetness perception.
    Zhang Z; Tang X; Li J; Yang W
    Int J Occup Saf Ergon; 2020 Jun; 26(2):370-383. PubMed ID: 29537944
    [No Abstract]   [Full Text] [Related]  

  • 13. Friction dynamics of moisturized human skin under non-linear motion.
    Sakata Y; Mayama H; Nonomura Y
    Int J Cosmet Sci; 2022 Feb; 44(1):20-29. PubMed ID: 34767633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and experimental validation of a mathematical model for friction between fabrics and a volar forearm phantom.
    Cottenden AM; Cottenden DJ; Karavokiros S; Wong WK
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1097-106. PubMed ID: 19024157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribology of the sock-skin Interface - the influence of different fabric parameters on sock friction.
    DeBois IJ; Agarwal E; Kapoor A; Mathur K
    J Foot Ankle Res; 2022 Aug; 15(1):61. PubMed ID: 35986404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study of the influence of temperature and humidity on skin friction property].
    Tang W; Ge S; Zhu H; Feng T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):523-5, 549. PubMed ID: 19634665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Textiles and human skin, microclimate, cutaneous reactions: an overview.
    Zhong W; Xing MM; Pan N; Maibach HI
    Cutan Ocul Toxicol; 2006; 25(1):23-39. PubMed ID: 16702052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison.
    Elkhyat A; Courderot-Masuyer C; Gharbi T; Humbert P
    Skin Res Technol; 2004 Nov; 10(4):215-21. PubMed ID: 15536654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of skin friction coefficient, and relationship to stratum corneum hydration in a normal Chinese population.
    Zhu YH; Song SP; Luo W; Elias PM; Man MQ
    Skin Pharmacol Physiol; 2011; 24(2):81-6. PubMed ID: 21088455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of two different fabrics on skin barrier function under real pressure conditions.
    Schario M; Tomova-Simitchieva T; Lichterfeld A; Herfert H; Dobos G; Lahmann N; Blume-Peytavi U; Kottner J
    J Tissue Viability; 2017 May; 26(2):150-155. PubMed ID: 27817985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.