These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18331987)

  • 21. Analysis of color shift on butterfly wings by Fourier transform of images from atomic force microscopy.
    Kaspar P; Sobola D; Sedlák P; Holcman V; Grmela L
    Microsc Res Tech; 2019 Dec; 82(12):2007-2013. PubMed ID: 31441987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale.
    Kinoshita S; Yoshioka S; Kawagoe K
    Proc Biol Sci; 2002 Jul; 269(1499):1417-21. PubMed ID: 12137569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales.
    Singer A; Boucheron L; Dietze SH; Jensen KE; Vine D; McNulty I; Dufresne ER; Prum RO; Mochrie SG; Shpyrko OG
    Sci Adv; 2016 Jun; 2(6):e1600149. PubMed ID: 27386575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics.
    Wang S; Girardello M; Zhang W
    J Genet Genomics; 2024 Mar; 51(3):292-301. PubMed ID: 37302475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Butterfly effects: novel functional materials inspired from the wings scales.
    Zhang W; Gu J; Liu Q; Su H; Fan T; Zhang D
    Phys Chem Chem Phys; 2014 Oct; 16(37):19767-80. PubMed ID: 25087928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale.
    Argyros A; Manos S; Large MC; McKenzie DR; Cox GC; Dwarte DM
    Micron; 2002; 33(5):483-7. PubMed ID: 11976036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic gyroid nanostructures exceeding their natural origins.
    Gan Z; Turner MD; Gu M
    Sci Adv; 2016 May; 2(5):e1600084. PubMed ID: 27386542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive evolution of butterfly wing shape: from morphology to behaviour.
    Le Roy C; Debat V; Llaurens V
    Biol Rev Camb Philos Soc; 2019 Aug; 94(4):1261-1281. PubMed ID: 30793489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental and evolutionary mechanisms shaping butterfly eyespots.
    Beldade P; Peralta CM
    Curr Opin Insect Sci; 2017 Feb; 19():22-29. PubMed ID: 28521939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The evolution and diversification of oakleaf butterflies.
    Wang S; Teng D; Li X; Yang P; Da W; Zhang Y; Zhang Y; Liu G; Zhang X; Wan W; Dong Z; Wang D; Huang S; Jiang Z; Wang Q; Lohman DJ; Wu Y; Zhang L; Jia F; Westerman E; Zhang L; Wang W; Zhang W
    Cell; 2022 Aug; 185(17):3138-3152.e20. PubMed ID: 35926506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Report. Dual gratings interspersed on a single butterfly scale.
    Ingram AL; Lousse V; Parker AR; Vigneron JP
    J R Soc Interface; 2008 Nov; 5(28):1387-90. PubMed ID: 18664428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterising the phenotypic diversity of Papilio dardanus wing patterns using an extensive museum collection.
    Thompson MJ; Timmermans MJ
    PLoS One; 2014; 9(5):e96815. PubMed ID: 24837717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling the fine-tuned lemon coloration of a pierid butterfly Catopsilia pomona.
    Mishra M; Choudhury A; Achary PS; Sahoo H
    Microscopy (Oxf); 2017 Dec; 66(6):414-423. PubMed ID: 29036478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours.
    Wickham S; Large MC; Poladian L; Jermiin LS
    J R Soc Interface; 2006 Feb; 3(6):99-108. PubMed ID: 16849221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina.
    Giraldo MA; Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 May; 202(5):381-8. PubMed ID: 27072662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers.
    Zhang S; Chen Y
    Sci Rep; 2015 Nov; 5():16637. PubMed ID: 26577813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wing scale microstructures and nanostructures in butterflies--natural photonic crystals.
    Vértesy Z; Bálint Z; Kertész K; Vigneron JP; Lousse V; Biró LP
    J Microsc; 2006 Oct; 224(Pt 1):108-10. PubMed ID: 17100919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly.
    Yoshioka S; Kinoshita S
    Proc Biol Sci; 2006 Jan; 273(1583):129-34. PubMed ID: 16555778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.
    Gao Y; Peng Z; Shi T; Tan X; Zhang D; Huang Q; Zou C; Liao G
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5918-23. PubMed ID: 26369172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Random lasers from photonic crystal wings of butterfly and moth for speckle-free imaging.
    Chen SW; Lu JY; Hung BY; Chiesa M; Tung PH; Lin JH; Yang TC
    Opt Express; 2021 Jan; 29(2):2065-2076. PubMed ID: 33726407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.