BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18332084)

  • 1. Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver.
    Kitamura S; Nitta K; Tayama Y; Tanoue C; Sugihara K; Inoue T; Horie T; Ohta S
    Drug Metab Dispos; 2008 Jul; 36(7):1202-5. PubMed ID: 18332084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and intraspecies variation of the enzyme activity in rats.
    Sugihara K; Tayama Y; Shimomiya K; Yoshimoto D; Ohta S; Kitamura S
    Drug Metab Dispos; 2006 Feb; 34(2):208-12. PubMed ID: 16299165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes of aldehyde oxidase in postnatal rat liver.
    Tayama Y; Moriyasu A; Sugihara K; Ohta S; Kitamura S
    Drug Metab Pharmacokinet; 2007 Apr; 22(2):119-24. PubMed ID: 17495419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Aldehyde Oxidase 1-Mediated Carbazeran Oxidation in Chimeric TK-NOG Mice Transplanted with Human Hepatocytes.
    Uehara S; Yoneda N; Higuchi Y; Yamazaki H; Suemizu H
    Drug Metab Dispos; 2020 Jul; 48(7):580-586. PubMed ID: 32357972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver.
    Kitamura S; Sugihara K
    Xenobiotica; 2014 Jan; 44(2):123-34. PubMed ID: 24329499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes of aldehyde oxidase activity and protein expression in human liver cytosol.
    Tayama Y; Sugihara K; Sanoh S; Miyake K; Kitamura S; Ohta S
    Drug Metab Pharmacokinet; 2012; 27(5):543-7. PubMed ID: 22453079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver.
    Inoue T; Nitta K; Sugihara K; Horie T; Kitamura S; Ohta S
    Drug Metab Dispos; 2008 Dec; 36(12):2429-33. PubMed ID: 18784266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chimeric mice with humanized liver.
    Katoh M; Tateno C; Yoshizato K; Yokoi T
    Toxicology; 2008 Apr; 246(1):9-17. PubMed ID: 18248870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes.
    Tanoue C; Sugihara K; Uramaru N; Tayama Y; Watanabe Y; Horie T; Ohta S; Kitamura S
    Xenobiotica; 2013 Nov; 43(11):956-62. PubMed ID: 23651075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes that control the conversion of L-tryptophan-nicotinamide and the urinary excretion ratio (N(1)-methyl-2-pyridone-5-carboxamide + N(1)-methyl-4-pyridone-3-carboxamide)/N(1)-methylnicotinamide in mice.
    Shibata K; Morita N; Shibata Y; Fukuwatari T
    Biosci Biotechnol Biochem; 2013; 77(10):2105-11. PubMed ID: 24096677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver.
    Katoh M; Sawada T; Soeno Y; Nakajima M; Tateno C; Yoshizato K; Yokoi T
    J Pharm Sci; 2007 Feb; 96(2):428-37. PubMed ID: 17051594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between niacin equivalent intake and urinary excretion of its metabolites, N'-methylnicotinamide, N'-methyl-2-pyridone-5-carboxamide, and N'-methyl-4-pyridone-3-carboxamide, in humans consuming a self-selected food.
    Shibata K; Matsuo H
    Am J Clin Nutr; 1989 Jul; 50(1):114-9. PubMed ID: 2526576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of human metabolism of FK3453 by aldehyde oxidase using chimeric mice transplanted with human or rat hepatocytes.
    Sanoh S; Nozaki K; Murai H; Terashita S; Teramura T; Ohta S
    Drug Metab Dispos; 2012 Jan; 40(1):76-82. PubMed ID: 21984595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel ring oxidation of 4- or 5-substituted 2H-oxazole to corresponding 2-oxazolone catalyzed by cytosolic aldehyde oxidase.
    Arora VK; Philip T; Huang S; Shu YZ
    Drug Metab Dispos; 2012 Sep; 40(9):1668-76. PubMed ID: 22621803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver.
    Sanoh S; Horiguchi A; Sugihara K; Kotake Y; Tayama Y; Ohshita H; Tateno C; Horie T; Kitamura S; Ohta S
    Drug Metab Dispos; 2012 Feb; 40(2):322-8. PubMed ID: 22048522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.
    Nakada N; Oda K
    Xenobiotica; 2015; 45(9):757-65. PubMed ID: 25869242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromate reduction by rabbit liver aldehyde oxidase.
    Banks RB; Cooke RT
    Biochem Biophys Res Commun; 1986 May; 137(1):8-14. PubMed ID: 2941018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy.
    Sanoh S; Tayama Y; Sugihara K; Kitamura S; Ohta S
    Drug Metab Pharmacokinet; 2015 Feb; 30(1):52-63. PubMed ID: 25760530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in aldehyde oxidase activity in cytosolic preparations of human and monkey liver.
    Sugihara K; Kitamura S; Tatsumi K; Asahara T; Dohi K
    Biochem Mol Biol Int; 1997 May; 41(6):1153-60. PubMed ID: 9161710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alleviation of fatty liver in a rat model by enhancing N
    Takeuchi K; Yokouchi C; Goto H; Umehara K; Yamada H; Ishii Y
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):203-210. PubMed ID: 30446221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.