BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 18332222)

  • 21. Is mossy fiber sprouting present at the time of the first spontaneous seizures in rat experimental temporal lobe epilepsy?
    Nissinen J; Lukasiuk K; Pitkänen A
    Hippocampus; 2001; 11(3):299-310. PubMed ID: 11769311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.
    Murase S; Lantz CL; Kim E; Gupta N; Higgins R; Stopfer M; Hoffman DA; Quinlan EM
    Mol Neurobiol; 2016 Jul; 53(5):3477-3493. PubMed ID: 26093382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of increased local excitatory circuits in the hippocampus during epileptogenesis using focal flash photolysis of caged glutamate.
    Shao LR; Dudek FE
    Epilepsia; 2005; 46 Suppl 5():100-6. PubMed ID: 15987262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of Rho guanine nucleotide triphosphatases in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model.
    Dang J; Tian F; Li F; Huang W; Song M; Ding D; Huang X
    Clin Lab; 2014; 60(2):175-84. PubMed ID: 24660528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats.
    Cavazos JE; Zhang P; Qazi R; Sutula TP
    J Comp Neurol; 2003 Apr; 458(3):272-92. PubMed ID: 12619081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model.
    Lösing P; Niturad CE; Harrer M; Reckendorf CMZ; Schatz T; Sinske D; Lerche H; Maljevic S; Knöll B
    Mol Brain; 2017 Jul; 10(1):30. PubMed ID: 28716058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis.
    Bragin A; Wilson CL; Engel J
    Epilepsia; 2000; 41 Suppl 6():S144-52. PubMed ID: 10999536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in hippocampal GABAA/cBZR density during limbic epileptogenesis: relationship to cell loss and mossy fibre sprouting.
    Vivash L; Tostevin A; Liu DS; Dalic L; Dedeurwaerdere S; Hicks RJ; Williams DA; Myers DE; O'Brien TJ
    Neurobiol Dis; 2011 Feb; 41(2):227-36. PubMed ID: 20816783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mossy fiber sprouting is dissociated from kindling of generalized seizures in the guinea-pig.
    Mohapel P; Armitage LL; Gilbert TH; Hannesson DK; Teskey GC; Corcoran ME
    Neuroreport; 2000 Sep; 11(13):2897-901. PubMed ID: 11006962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy.
    Thind KK; Yamawaki R; Phanwar I; Zhang G; Wen X; Buckmaster PS
    J Comp Neurol; 2010 Mar; 518(5):647-67. PubMed ID: 20034063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Changes of mossy fiber sprouting in hippocampus of pentylenetetrazole kindling rats].
    Tian FF; Guo TH; Chen JM; Ma YF; Cai XF; Yao FH
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Dec; 32(6):1026-30. PubMed ID: 18182721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructural GABA immunocytochemistry in the mossy fiber terminals of Wistar and genetic absence epileptic rats receiving amygdaloid kindling stimulations.
    Akakin D; Sirvanci S; Gurbanova A; Aker R; Onat F; San T
    Brain Res; 2011 Mar; 1377():101-8. PubMed ID: 21195064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity.
    Hester MS; Danzer SC
    J Neurosci; 2013 May; 33(21):8926-36. PubMed ID: 23699504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy.
    Bouilleret V; Ridoux V; Depaulis A; Marescaux C; Nehlig A; Le Gal La Salle G
    Neuroscience; 1999 Mar; 89(3):717-29. PubMed ID: 10199607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy.
    Ndode-Ekane XE; Hayward N; Gröhn O; Pitkänen A
    Neuroscience; 2010 Mar; 166(1):312-32. PubMed ID: 20004712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus.
    Arabadzisz D; Antal K; Parpan F; Emri Z; Fritschy JM
    Exp Neurol; 2005 Jul; 194(1):76-90. PubMed ID: 15899245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Matrix Metalloproteinase-9 Overexpression Regulates Hippocampal Synaptic Plasticity and Decreases Alcohol Consumption and Preference in Mice.
    Yin LT; Xie XY; Xue LY; Yang XR; Jia J; Zhang Y; Zhang C
    Neurochem Res; 2020 Aug; 45(8):1902-1912. PubMed ID: 32415404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model.
    Cross DJ; Cavazos JE
    Epilepsy Res; 2007 Feb; 73(2):156-65. PubMed ID: 17070016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Matrix Metalloproteinase-9 and Synaptic Plasticity in the Central Amygdala in Control of Alcohol-Seeking Behavior.
    Stefaniuk M; Beroun A; Lebitko T; Markina O; Leski S; Meyza K; Grzywacz A; Samochowiec J; Samochowiec A; Radwanska K; Kaczmarek L
    Biol Psychiatry; 2017 Jun; 81(11):907-917. PubMed ID: 28190519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ryanodine receptors drive neuronal loss and regulate synaptic proteins during epileptogenesis.
    Royero PX; Higa GSV; Kostecki DS; Dos Santos BA; Almeida C; Andrade KA; Kinjo ER; Kihara AH
    Exp Neurol; 2020 May; 327():113213. PubMed ID: 31987836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.