BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18333618)

  • 1. Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin.
    Xiao J; Suzuki M; Jiang X; Chen X; Yamamoto K; Ren F; Xu M
    J Agric Food Chem; 2008 Apr; 56(7):2350-6. PubMed ID: 18333618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Zinc (II) on the interactions of bovine serum albumin with flavonols bearing different number of hydroxyl substituent on B-ring.
    Cao S; Jiang X; Chen J
    J Inorg Biochem; 2010 Feb; 104(2):146-52. PubMed ID: 19932510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hydroxylation and glycosylation in ring A of soybean isoflavones on interaction with BSA.
    Zhao J; Ren F
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):682-5. PubMed ID: 19112046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of CpLIP2 Lipase Hydrolytic Activity by Four Flavonols (Galangin, Kaempferol, Quercetin, Myricetin) Compared to Orlistat and Their Binding Mechanisms Studied by Quenching of Fluorescence.
    Nasri R; Bidel LPR; Rugani N; Perrier V; Carrière F; Dubreucq E; Jay-Allemand C
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31398944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols.
    Moreira MR; Kanashiro A; Kabeya LM; Polizello AC; Azzolini AE; Curti C; Oliveira CA; T-do Amaral A; Lucisano-Valim YM
    Life Sci; 2007 Jul; 81(4):317-26. PubMed ID: 17610907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysical Behavior of Plant Flavonols Galangin, Kaempferol, Quercetin, and Myricetin in Homogeneous Media and the DMPC Model Membrane: Unveiling the Influence of the B-Ring Hydroxylation of Flavonols.
    Sahu AK; Mishra AK
    J Phys Chem B; 2022 Apr; 126(15):2863-2875. PubMed ID: 35404618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the glycosylation of flavonoids on interaction with protein.
    Cao H; Wu D; Wang H; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):972-5. PubMed ID: 19493695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-affinity relationship of flavones on binding to serum albumins: effect of hydroxyl groups on ring A.
    Xiao J; Cao H; Wang Y; Yamamoto K; Wei X
    Mol Nutr Food Res; 2010 Jul; 54 Suppl 2():S253-60. PubMed ID: 20306480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of flavonols with human serum albumin: a biophysical study showing structure-activity relationship and enhancement when coated on silver nanoparticles.
    Das P; Chaudhari SK; Das A; Kundu S; Saha C
    J Biomol Struct Dyn; 2019 Apr; 37(6):1414-1426. PubMed ID: 29633910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydroxylation at C3' on the B ring and diglycosylation at C3 on the C ring on flavonols inhibition of α-glucosidase activity.
    Qin Y; Chen X; Xu F; Gu C; Zhu K; Zhang Y; Wu G; Wang P; Tan L
    Food Chem; 2023 Apr; 406():135057. PubMed ID: 36459800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion.
    Kim JD; Liu L; Guo W; Meydani M
    J Nutr Biochem; 2006 Mar; 17(3):165-76. PubMed ID: 16169200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-covalent interaction of dietary polyphenols with total plasma proteins of type II diabetes: molecular structure/property-affinity relationships.
    Xiao J; Zhao Y; Wang H; Yuan Y; Yang F; Zhang C; Kai G
    Integr Biol (Camb); 2011 Nov; 3(11):1087-94. PubMed ID: 21947088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin.
    Hu X; Cui S; Liu Jq
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(2):548-53. PubMed ID: 20615751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic study on binding of gentisic acid to bovine serum albumin.
    Garzón A; Bravo I; Carrión-Jiménez MR; Rubio-Moraga Á; Albaladejo J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():26-33. PubMed ID: 26010705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinctive antioxidant and antiinflammatory effects of flavonols.
    Wang L; Tu YC; Lian TW; Hung JT; Yen JH; Wu MJ
    J Agric Food Chem; 2006 Dec; 54(26):9798-804. PubMed ID: 17177504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Glucosidase inhibitors from Chinese bayberry (
    Liu Y; Zhan L; Xu C; Jiang H; Zhu C; Sun L; Sun C; Li X
    RSC Adv; 2020 Aug; 10(49):29347-29361. PubMed ID: 35521141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the interaction characteristics of cefamandole with bovine serum albumin by spectroscopic technique.
    Wang Q; Liu X; Su M; Shi Z; Sun H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():321-6. PubMed ID: 25448935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of isofraxidin to bovine serum albumin.
    Liu J; Tian J; Hu Z; Chen X
    Biopolymers; 2004 Mar; 73(4):443-50. PubMed ID: 14991661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on the interaction between transferrin and flavonols: Experimental and computational modeling approaches.
    Li X; Han L; Song Z; Xu R; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122128. PubMed ID: 36455462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence spectrometric study on the interaction of tamibarotene with bovine serum albumin.
    Ye H; Qiu B; Lin Z; Chen G
    Luminescence; 2011; 26(5):336-41. PubMed ID: 22021245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.