These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 18333627)
1. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Bruzewicz DA; Reches M; Whitesides GM Anal Chem; 2008 May; 80(9):3387-92. PubMed ID: 18333627 [TBL] [Abstract][Full Text] [Related]
2. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Dornelas KL; Dossi N; Piccin E Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806 [TBL] [Abstract][Full Text] [Related]
3. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer. Bao N; Zhang Q; Xu JJ; Chen HY J Chromatogr A; 2005 Sep; 1089(1-2):270-5. PubMed ID: 16130797 [TBL] [Abstract][Full Text] [Related]
5. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
6. Facile Photo and Thermal Two-Stage Curing for High-Performance 3D Printing of Poly(Dimethylsiloxane). Ji Z; Jiang D; Zhang X; Guo Y; Wang X Macromol Rapid Commun; 2020 May; 41(10):e2000064. PubMed ID: 32307760 [TBL] [Abstract][Full Text] [Related]
7. 3D printed mold leachates in PDMS microfluidic devices. de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661 [TBL] [Abstract][Full Text] [Related]
8. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces. Ricoult SG; Nezhad AS; Knapp-Mohammady M; Kennedy TE; Juncker D Langmuir; 2014 Oct; 30(40):12002-10. PubMed ID: 25222734 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic PDMS on paper (POP) devices. Shangguan JW; Liu Y; Pan JB; Xu BY; Xu JJ; Chen HY Lab Chip; 2016 Dec; 17(1):120-127. PubMed ID: 27883132 [TBL] [Abstract][Full Text] [Related]
10. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique. Wu P; Zhang C Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton N Anal Chem; 2002 Aug; 74(16):4117-23. PubMed ID: 12199582 [TBL] [Abstract][Full Text] [Related]
12. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Zhou X; Lau L; Lam WW; Au SW; Zheng B Anal Chem; 2007 Jul; 79(13):4924-30. PubMed ID: 17547370 [TBL] [Abstract][Full Text] [Related]
13. Tailoring the surface properties of poly(dimethylsiloxane) microfluidic devices. Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton NL Langmuir; 2004 Jun; 20(13):5569-74. PubMed ID: 15986702 [TBL] [Abstract][Full Text] [Related]
14. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers. Rajendra V; Sicard C; Brennan JD; Brook MA Analyst; 2014 Dec; 139(24):6361-5. PubMed ID: 25353713 [TBL] [Abstract][Full Text] [Related]