BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18333673)

  • 1. Effects of anaerobic incubation on the desorption of polycyclic aromatic hydrocarbons from contaminated soils.
    Zhu H; Roper JC; Pfaender FK; Aitken MD
    Environ Toxicol Chem; 2008 Apr; 27(4):837-44. PubMed ID: 18333673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.
    Bueno-Montes M; Springael D; Ortega-Calvo JJ
    Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.
    Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS
    J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation.
    Posada-Baquero R; Grifoll M; Ortega-Calvo JJ
    Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs).
    Fava F; Berselli S; Conte P; Piccolo A; Marchetti L
    Biotechnol Bioeng; 2004 Oct; 88(2):214-23. PubMed ID: 15449300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desorption and bioavailability of polycyclic aromatic hydrocarbons in contaminated soil subjected to long-term in situ biostimulation.
    Richardson SD; Aitken MD
    Environ Toxicol Chem; 2011 Dec; 30(12):2674-81. PubMed ID: 21932296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil.
    Potin O; Veignie E; Rafin C
    FEMS Microbiol Ecol; 2004 Dec; 51(1):71-8. PubMed ID: 16329856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhizosphere-enhanced biosurfactant action on slowly desorbing PAHs in contaminated soil.
    Posada-Baquero R; Jiménez-Volkerink SN; García JL; Vila J; Cantos M; Grifoll M; Ortega-Calvo JJ
    Sci Total Environ; 2020 Jun; 720():137608. PubMed ID: 32143055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of imposed anaerobic conditions and microbial activity on aqueous-phase solubility of polycyclic aromatic hydrocarbons from soil.
    Pravecek TL; Christman RF; Pfaender FK
    Environ Toxicol Chem; 2005 Feb; 24(2):286-93. PubMed ID: 15719987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation of polycyclic aromatic hydrocarbon residues in soils.
    Gao Y; Zeng Y; Shen Q; Ling W; Han J
    J Hazard Mater; 2009 Dec; 172(2-3):897-903. PubMed ID: 19692170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of solvents to enhance PAH biodegradation of coal tar-contaminated soils.
    Lee PH; Ong SK; Golchin J; Nelson GL
    Water Res; 2001 Nov; 35(16):3941-9. PubMed ID: 12230177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions.
    Ambrosoli R; Petruzzelli L; Luis Minati J; Ajmone Marsan F
    Chemosphere; 2005 Sep; 60(9):1231-6. PubMed ID: 16018893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor.
    Rehmann L; Prpich GP; Daugulis AJ
    Chemosphere; 2008 Oct; 73(5):798-804. PubMed ID: 18640698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis.
    Ma B; He Y; Chen HH; Xu JM; Rengel Z
    Environ Pollut; 2010 Mar; 158(3):855-61. PubMed ID: 19854547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.
    Guo M; Gong Z; Allinson G; Tai P; Miao R; Li X; Jia C; Zhuang J
    Chemosphere; 2016 Feb; 144():1513-20. PubMed ID: 26498099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil.
    Sun M; Ye M; Hu F; Li H; Teng Y; Luo Y; Jiang X; Kengara FO
    J Hazard Mater; 2014 Jan; 264():505-13. PubMed ID: 24239261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique.
    Stokes JD; Wilkinson A; Reid BJ; Jones KC; Semple KT
    Environ Toxicol Chem; 2005 Jun; 24(6):1325-30. PubMed ID: 16117107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments.
    Gong Z; Wilke BM; Alef K; Li P; Zhou Q
    Chemosphere; 2006 Feb; 62(5):780-7. PubMed ID: 15982705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils.
    Gao Y; Hu X; Zhou Z; Zhang W; Wang Y; Sun B
    Environ Pollut; 2017 Mar; 222():465-476. PubMed ID: 28063713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil.
    Sabaté J; Viñas M; Solanas AM
    Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.