These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18333814)
1. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814 [TBL] [Abstract][Full Text] [Related]
2. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V. Fujita H; Shimizu K; Nagamori E Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625 [TBL] [Abstract][Full Text] [Related]
3. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha. Foulstone EJ; Huser C; Crown AL; Holly JM; Stewart CE Exp Cell Res; 2004 Mar; 294(1):223-35. PubMed ID: 14980516 [TBL] [Abstract][Full Text] [Related]
4. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045 [TBL] [Abstract][Full Text] [Related]
5. Characterization of human myoblast cultures for tissue engineering. Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of serum-free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability. Fujita H; Endo A; Shimizu K; Nagamori E Biotechnol Bioeng; 2010 Dec; 107(5):894-901. PubMed ID: 20635352 [TBL] [Abstract][Full Text] [Related]
7. Serum-free culture conditions for analysis of secretory proteinases during myogenic differentiation of mouse C2C12 myoblasts. Goto S; Miyazaki K; Funabiki T; Yasumitsu H Anal Biochem; 1999 Aug; 272(2):135-42. PubMed ID: 10415081 [TBL] [Abstract][Full Text] [Related]
8. Beneficial synergistic interactions of TNF-alpha and IL-6 in C2 skeletal myoblasts--potential cross-talk with IGF system. Al-Shanti N; Saini A; Faulkner SH; Stewart CE Growth Factors; 2008 Apr; 26(2):61-73. PubMed ID: 18428025 [TBL] [Abstract][Full Text] [Related]
9. Isolation and validation of human prepubertal skeletal muscle cells: maturation and metabolic effects of IGF-I, IGFBP-3 and TNFalpha. Grohmann M; Foulstone E; Welsh G; Holly J; Shield J; Crowne E; Stewart C J Physiol; 2005 Oct; 568(Pt 1):229-42. PubMed ID: 16081485 [TBL] [Abstract][Full Text] [Related]
10. Effects of IGF-I, IGF-II, bFGF and PDGF on the initiation of mRNA translation in C2C12 myoblasts and differentiating myoblasts. Smith CW; Klaasmeyer JG; Woods TL; Jones SJ Tissue Cell; 1999 Aug; 31(4):403-12. PubMed ID: 10522389 [TBL] [Abstract][Full Text] [Related]
11. 3-D in vitro model of early skeletal muscle development. Cheema U; Yang SY; Mudera V; Goldspink GG; Brown RA Cell Motil Cytoskeleton; 2003 Mar; 54(3):226-36. PubMed ID: 12589681 [TBL] [Abstract][Full Text] [Related]
12. Roles of insulin-like growth factors and their binding proteins in the differentiation of mouse tongue myoblasts. Yamane A; Urushiyama T; Diekwisch TG Int J Dev Biol; 2002 Sep; 46(6):807-16. PubMed ID: 12382947 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of rat neural tissue in a serum-free embryo culture model followed by in vivo transplantation. Belovari T; Bulić-Jakus F; Jurić-Lekić G; Marić S; Jezek D; Vlahović M Croat Med J; 2001 Dec; 42(6):611-7. PubMed ID: 11740842 [TBL] [Abstract][Full Text] [Related]
14. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle. Cheema U; Brown R; Mudera V; Yang SY; McGrouther G; Goldspink G J Cell Physiol; 2005 Jan; 202(1):67-75. PubMed ID: 15389530 [TBL] [Abstract][Full Text] [Related]
15. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. Chaturvedi V; Dye DE; Kinnear BF; van Kuppevelt TH; Grounds MD; Coombe DR PLoS One; 2015; 10(6):e0127675. PubMed ID: 26030912 [TBL] [Abstract][Full Text] [Related]
16. Growth and differentiation of alveolar bone cells in tissue-engineered constructs and monolayer cultures. Malicev E; Marolt D; Kregar Velikonja N; Kreft ME; Drobnic M; Rode M Biotechnol Bioeng; 2008 Jul; 100(4):773-81. PubMed ID: 18496876 [TBL] [Abstract][Full Text] [Related]
17. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Cerino G; Gaudiello E; Grussenmeyer T; Melly L; Massai D; Banfi A; Martin I; Eckstein F; Grapow M; Marsano A Biotechnol Bioeng; 2016 Jan; 113(1):226-36. PubMed ID: 26126766 [TBL] [Abstract][Full Text] [Related]
18. [Effect of IGF-1 on proliferation and differentiation of primary human embryonic myoblasts]. Cen S; Zhang J; Huang F; Yang Z; Xie H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):84-7. PubMed ID: 18361246 [TBL] [Abstract][Full Text] [Related]
19. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471 [TBL] [Abstract][Full Text] [Related]
20. Pro- and anti-apoptotic roles for IGF-I in TNF-alpha-induced apoptosis: a MAP kinase mediated mechanism. Saini A; Al-Shanti N; Faulkner SH; Stewart CE Growth Factors; 2008 Oct; 26(5):239-53. PubMed ID: 18651291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]