BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 18334269)

  • 1. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase.
    Pinakoulaki E; Varotsis C
    J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopy of nitric oxide reductase and cbb(3) heme-copper oxidase.
    Pinakoulaki E; Varotsis C
    J Phys Chem B; 2008 Feb; 112(6):1851-7. PubMed ID: 18211060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of the His-heme Fe2+-NO species in the reduction of NO to N2O by ba3-oxidase from thermus thermophilus.
    Pinakoulaki E; Ohta T; Soulimane T; Kitagawa T; Varotsis C
    J Am Chem Soc; 2005 Nov; 127(43):15161-7. PubMed ID: 16248657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a bimetallic-bridging intermediate in the reduction of NO to N2O: a density functional theory study.
    Ohta T; Kitagawa T; Varotsis C
    Inorg Chem; 2006 Apr; 45(8):3187-90. PubMed ID: 16602774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO binding and dynamics in reduced heme-copper oxidases aa3 from Paracoccus denitrificans and ba3 from Thermus thermophilus.
    Pilet E; Nitschke W; Rappaport F; Soulimane T; Lambry JC; Liebl U; Vos MH
    Biochemistry; 2004 Nov; 43(44):14118-27. PubMed ID: 15518562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved resonance Raman and time-resolved step-scan FTIR studies of nitric oxide reductase from Paracoccus denitrificans: comparison of the heme b3-FeB site to that of the heme-CuB in oxidases.
    Pinakoulaki E; Varotsis C
    Biochemistry; 2003 Dec; 42(50):14856-61. PubMed ID: 14674760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen.
    Flock U; Watmough NJ; Adelroth P
    Biochemistry; 2005 Aug; 44(31):10711-9. PubMed ID: 16060680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases.
    Hayashi T; Lin IJ; Chen Y; Fee JA; Moënne-Loccoz P
    J Am Chem Soc; 2007 Dec; 129(48):14952-8. PubMed ID: 17997553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From NO to OO: nitric oxide and dioxygen in bacterial respiration.
    Hendriks J; Gohlke U; Saraste M
    J Bioenerg Biomembr; 1998 Feb; 30(1):15-24. PubMed ID: 9623801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications.
    Giuffrè A; Stubauer G; Sarti P; Brunori M; Zumft WG; Buse G; Soulimane T
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14718-23. PubMed ID: 10611279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman detection of the Fe2+-C-N modes in heme-copper oxidases: a probe of the active site.
    Pinakoulaki E; Vamvouka M; Varotsis C
    Inorg Chem; 2004 Aug; 43(16):4907-10. PubMed ID: 15285666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products.
    Borisov VB; Forte E; Giuffrè A; Konstantinov A; Sarti P
    J Inorg Biochem; 2009 Aug; 103(8):1185-7. PubMed ID: 19592112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The active site of the bacterial nitric oxide reductase is a dinuclear iron center.
    Hendriks J; Warne A; Gohlke U; Haltia T; Ludovici C; Lübben M; Saraste M
    Biochemistry; 1998 Sep; 37(38):13102-9. PubMed ID: 9748316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase.
    Borisov VB; Forte E; Sarti P; Brunori M; Konstantinov AA; Giuffrè A
    FEBS Lett; 2006 Sep; 580(20):4823-6. PubMed ID: 16904110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme/non-heme diiron(II) complexes and O2, CO, and NO adducts as reduced and substrate-bound models for the active site of bacterial nitric oxide reductase.
    Wasser IM; Huang HW; Moënne-Loccoz P; Karlin KD
    J Am Chem Soc; 2005 Mar; 127(10):3310-20. PubMed ID: 15755147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman, infrared, and EPR investigation on the binuclear site structure of the heme-copper ubiquinol oxidases from Acetobacter aceti: effect of the heme peripheral formyl group substitution.
    Tsubaki M; Matsushita K; Adachi O; Hirota S; Kitagawa T; Hori H
    Biochemistry; 1997 Oct; 36(42):13034-42. PubMed ID: 9335565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the Membrane-intrinsic Nitric Oxide Reductase from Roseobacter denitrificans.
    Crow A; Matsuda Y; Arata H; Oubrie A
    Biochemistry; 2016 Jun; 55(23):3198-203. PubMed ID: 27185533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NO and O2 reactivities of synthetic functional models of nitric oxide reductase and cytochrome c oxidase.
    Dey SG; Dey A
    Dalton Trans; 2011 Dec; 40(47):12633-47. PubMed ID: 21952558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.