BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18334269)

  • 21. Fast cytochrome bo from Escherichia coli binds two molecules of nitric oxide at CuB.
    Butler CS; Seward HE; Greenwood C; Thomson AJ
    Biochemistry; 1997 Dec; 36(51):16259-66. PubMed ID: 9405060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactions of nitric oxide with copper containing oxidases; cytochrome c oxidase and laccase.
    Wilson MT; Torres J
    IUBMB Life; 2004 Jan; 56(1):7-11. PubMed ID: 14992374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2018 Nov; 1859(11):1223-1234. PubMed ID: 30248312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of nitric oxide with cytochrome P450 BM3.
    Quaroni LG; Seward HE; McLean KJ; Girvan HM; Ost TW; Noble MA; Kelly SM; Price NC; Cheesman MR; Smith WE; Munro AW
    Biochemistry; 2004 Dec; 43(51):16416-31. PubMed ID: 15610036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide.
    Zhao XJ; Sampath V; Caughey WS
    Biochem Biophys Res Commun; 1995 Jul; 212(3):1054-60. PubMed ID: 7626092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase.
    Hendriks JH; Prior L; Baker AR; Thomson AJ; Saraste M; Watmough NJ
    Biochemistry; 2001 Nov; 40(44):13361-9. PubMed ID: 11683646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide activation by caa3 oxidoreductase from Thermus thermophilus.
    Ohta T; Soulimane T; Kitagawa T; Varotsis C
    Phys Chem Chem Phys; 2015 Apr; 17(16):10894-8. PubMed ID: 25820937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates.
    Mahinthichaichan P; Gennis RB; Tajkhorshid E
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):712-724. PubMed ID: 29883591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of N2O reduction by the mu4-S tetranuclear CuZ cluster of nitrous oxide reductase.
    Gorelsky SI; Ghosh S; Solomon EI
    J Am Chem Soc; 2006 Jan; 128(1):278-90. PubMed ID: 16390158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of four iron centers in Paracoccus halodenitrificans nitric oxide reductase.
    Sakurai T; Sakurai N; Matsumoto H; Hirota S; Yamauchi O
    Biochem Biophys Res Commun; 1998 Oct; 251(1):248-51. PubMed ID: 9790940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of O
    Blomberg MRA
    Chem Soc Rev; 2020 Oct; 49(20):7301-7330. PubMed ID: 33006348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemistry. Catalyzing NO to N2O in the nitrogen cycle.
    Moënne-Loccoz P; Fee JA
    Science; 2010 Dec; 330(6011):1632-3. PubMed ID: 21164002
    [No Abstract]   [Full Text] [Related]  

  • 35. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.
    Zhao X; Yeung N; Russell BS; Garner DK; Lu Y
    J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. No laughing matter: the unmaking of the greenhouse gas dinitrogen monoxide by nitrous oxide reductase.
    Schneider LK; Wüst A; Pomowski A; Zhang L; Einsle O
    Met Ions Life Sci; 2014; 14():177-210. PubMed ID: 25416395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.
    Tosha T; Shiro Y
    IUBMB Life; 2013 Mar; 65(3):217-26. PubMed ID: 23378174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the nitrite and nitric oxide reductase activity of cbb3 oxidase: resonance Raman detection of a six-coordinate ferrous heme-nitrosyl species in the binuclear b3/CuB center.
    Loullis A; Pinakoulaki E
    Chem Commun (Camb); 2015 Dec; 51(98):17398-401. PubMed ID: 26465875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis of biological N2O generation by bacterial nitric oxide reductase.
    Hino T; Matsumoto Y; Nagano S; Sugimoto H; Fukumori Y; Murata T; Iwata S; Shiro Y
    Science; 2010 Dec; 330(6011):1666-70. PubMed ID: 21109633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of nitric oxide in bacterial nitric oxide reductase--a theoretical model study.
    Blomberg LM; Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2006 Apr; 1757(4):240-52. PubMed ID: 16774734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.