These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 18334313)
1. Classification of simulated hyperplastic stages in the breast ducts based on ultrasound RF echo. Taslidere E; Cohen FS; Georgiou G IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):50-63. PubMed ID: 18334313 [TBL] [Abstract][Full Text] [Related]
2. Classification of the stages of hyperplasia in breast ducts by analyzing different depths and segmentation of ultrasound breast scans into ductal areas. Taslidere E; Cohen FS; Georgiou G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2396-9. PubMed ID: 17946958 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided diagnosis based on speckle patterns in ultrasound images. Moon WK; Lo CM; Huang CS; Chen JH; Chang RF Ultrasound Med Biol; 2012 Jul; 38(7):1251-61. PubMed ID: 22579548 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing: preliminary phantom and in vivo breast study. Kim C; Yoon C; Park JH; Lee Y; Kim WH; Chang JM; Choi BI; Song TK; Yoo YM IEEE Trans Biomed Eng; 2013 Oct; 60(10):2716-24. PubMed ID: 23686939 [TBL] [Abstract][Full Text] [Related]
5. Tissue characterization using the continuous wavelet transform. Part II: Application on breast RF data. Georgiou G; Cohen FS; Piccoli CW; Forsberg F; Goldberg BB IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):364-73. PubMed ID: 11370350 [TBL] [Abstract][Full Text] [Related]
6. Automatic mammary duct detection in 3D ultrasound. Gooding MJ; Mellor M; Shipley JA; Broadbent KA; Goddard DA Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):434-41. PubMed ID: 16685875 [TBL] [Abstract][Full Text] [Related]
7. Effect of a novel segmentation algorithm on radiologists' diagnosis of breast masses using ultrasound imaging. Tian JW; Ning CP; Guo YH; Cheng HD; Tang XL Ultrasound Med Biol; 2012 Jan; 38(1):119-27. PubMed ID: 22104530 [TBL] [Abstract][Full Text] [Related]
8. Detection of breast lesion regions in ultrasound images using wavelets and order statistics. Mogatadakala KV; Donohue KD; Piccoli CW; Forsberg F Med Phys; 2006 Apr; 33(4):840-9. PubMed ID: 16696459 [TBL] [Abstract][Full Text] [Related]
9. ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis. Gefen S; Tretiak OJ; Piccoli CW; Donohue KD; Petropulu AP; Shankar PM; Dumane VA; Huang L; Kutay MA; Genis V; Forsberg F; Reid JM; Goldberg BB IEEE Trans Med Imaging; 2003 Feb; 22(2):170-7. PubMed ID: 12715993 [TBL] [Abstract][Full Text] [Related]
10. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. Madabhushi A; Metaxas DN IEEE Trans Med Imaging; 2003 Feb; 22(2):155-69. PubMed ID: 12715992 [TBL] [Abstract][Full Text] [Related]
11. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Lin X; Wang J; Han F; Fu J; Li A Eur J Radiol; 2012 May; 81(5):873-8. PubMed ID: 21420814 [TBL] [Abstract][Full Text] [Related]
12. 3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions. Deprez JF; Brusseau E; Schmitt C; Cloutier G; Basset O Med Image Anal; 2009 Feb; 13(1):116-27. PubMed ID: 18823814 [TBL] [Abstract][Full Text] [Related]
13. Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Gómez W; Leija L; Alvarenga AV; Infantosi AF; Pereira WC Med Phys; 2010 Jan; 37(1):82-95. PubMed ID: 20175469 [TBL] [Abstract][Full Text] [Related]
14. Assessing the combined performance of texture and morphological parameters in distinguishing breast tumors in ultrasound images. Alvarenga AV; Infantosi AF; Pereira WC; Azevedo CM Med Phys; 2012 Dec; 39(12):7350-8. PubMed ID: 23231284 [TBL] [Abstract][Full Text] [Related]
15. Breast tissue characterization using FARMA modeling of ultrasonic RF echo. Alacam B; Yazici B; Bilgutay N; Forsberg F; Piccoli C Ultrasound Med Biol; 2004 Oct; 30(10):1397-407. PubMed ID: 15582240 [TBL] [Abstract][Full Text] [Related]
16. Malignant and benign breast tissue classification performance using a scatterer structure preclassifier. Donohue KD; Huang L; Georgiou G; Cohen FS; Piccoli CW; Forsberg F IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):724-9. PubMed ID: 12839186 [TBL] [Abstract][Full Text] [Related]
17. Dynamic frame pairing in real-time freehand elastography. Xia R; Tao G; Thittai AK IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):979-85. PubMed ID: 24859661 [TBL] [Abstract][Full Text] [Related]
18. Classification of benign and malignant breast tumors by 2-d analysis based on contour description and scatterer characterization. Tsui PH; Liao YY; Chang CC; Kuo WH; Chang KJ; Yeh CK IEEE Trans Med Imaging; 2010 Feb; 29(2):513-22. PubMed ID: 20129851 [TBL] [Abstract][Full Text] [Related]
19. Differentiation of Breast Lesions by Use of HyperSPACE: Hyper-Spectral Analysis for Characterization in Echography. Granchi S; Vannacci E; Biagi E; Masotti L Ultrasound Med Biol; 2015 Jul; 41(7):1967-80. PubMed ID: 25840476 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of solid nodules in ultrasonographic breast image based on wavelet transform. Park S; Kong HJ; Moon WK; Kim HC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5650-3. PubMed ID: 18003294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]