These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18334389)

  • 41. Modeling real-time 3-d lung deformations for medical visualization.
    Santhanam AP; Imielinska C; Davenport P; Kupelian P; Rolland JP
    IEEE Trans Inf Technol Biomed; 2008 Mar; 12(2):257-70. PubMed ID: 18348955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic generation of finite element meshes from computed tomography data.
    Viceconti M; Taddei F
    Crit Rev Biomed Eng; 2003; 31(1-2):27-72. PubMed ID: 14964351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A biplanar fluoroscopic approach for the measurement, modeling, and simulation of needle and soft-tissue interaction.
    Hing JT; Brooks AD; Desai JP
    Med Image Anal; 2007 Feb; 11(1):62-78. PubMed ID: 17113339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soft tissue deformation simulation in virtual surgery using nonlinear finite element method.
    Yan Z; Gu L; Huang P; Lv S; Yu X; Kong X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3642-5. PubMed ID: 18002786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new approach for assigning bone material properties from CT images into finite element models.
    Chen G; Schmutz B; Epari D; Rathnayaka K; Ibrahim S; Schuetz MA; Pearcy MJ
    J Biomech; 2010 Mar; 43(5):1011-5. PubMed ID: 19942221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A three-dimensional finite element model of human atrial anatomy: new methods for cubic Hermite meshes with extraordinary vertices.
    Gonzales MJ; Sturgeon G; Krishnamurthy A; Hake J; Jonas R; Stark P; Rappel WJ; Narayan SM; Zhang Y; Segars WP; McCulloch AD
    Med Image Anal; 2013 Jul; 17(5):525-37. PubMed ID: 23602918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A method to measure the hyperelastic parameters of ex vivo breast tissue samples.
    Samani A; Plewes D
    Phys Med Biol; 2004 Sep; 49(18):4395-405. PubMed ID: 15509073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. X-ray computed tomography methods for in vivo evaluation of local drug release systems.
    Salem KA; Szymanski-Exner A; Lazebnik RS; Breen MS; Gao J; Wilson DL
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1310-6. PubMed ID: 12585713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Technical note: creating a four-dimensional model of the liver using finite element analysis.
    Brock KK; Hollister SJ; Dawson LA; Balter JM
    Med Phys; 2002 Jul; 29(7):1403-5. PubMed ID: 12148719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue.
    Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retrospective identification of subject anthropometry using computed tomography of the leg.
    Daly M; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():114-9. PubMed ID: 16817595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Data-guided brain deformation modeling: evaluation of a 3-D adjoint inversion method in porcine studies.
    Lunn KE; Paulsen KD; Liu F; Kennedy FE; Hartov A; Roberts DW
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1893-900. PubMed ID: 17019852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of viscoelastic soft tissue properties from in vivo animal experiments and inverse FE parameter estimation.
    Kim J; Srinivasan MA
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):599-606. PubMed ID: 16686009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
    Idkaidek A; Jasiuk I
    J Robot Surg; 2015 Dec; 9(4):299-310. PubMed ID: 26530842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A three-dimensional large deformation model for soft tissue using meshless method.
    Dehghan MR; Rahimi A; Talebi HA; Zareinejad M
    Int J Med Robot; 2016 Jun; 12(2):241-53. PubMed ID: 26260248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of thermal sensitivity of CT during heating of liver: an ex vivo study.
    Pandeya GD; Greuter MJ; Schmidt B; Flohr T; Oudkerk M
    Br J Radiol; 2012 Sep; 85(1017):e661-5. PubMed ID: 22919016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
    Harih G; Tada M; Dolšak B
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1409-17. PubMed ID: 26856769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An information-based machine learning approach to elasticity imaging.
    Hoerig C; Ghaboussi J; Insana MF
    Biomech Model Mechanobiol; 2017 Jun; 16(3):805-822. PubMed ID: 27858175
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiologically based modeling of 3-D vascular networks and CT scan angiography.
    Kretowski M; Rolland Y; Bézy-Wendling J; Coatrieux JL
    IEEE Trans Med Imaging; 2003 Feb; 22(2):248-57. PubMed ID: 12716001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.
    Rohan E; Lukeš V; Jonášová A
    J Math Biol; 2018 Aug; 77(2):421-454. PubMed ID: 29368273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.