BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18334480)

  • 1. ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells.
    Sarker KP; Kataoka H; Chan A; Netherton SJ; Pot I; Huynh MA; Feng X; Bonni A; Riabowol K; Bonni S
    J Biol Chem; 2008 May; 283(19):13269-79. PubMed ID: 18334480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SnoN is a cell type-specific mediator of transforming growth factor-beta responses.
    Sarker KP; Wilson SM; Bonni S
    J Biol Chem; 2005 Apr; 280(13):13037-46. PubMed ID: 15677458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ING1 and ING2: multifaceted tumor suppressor genes.
    Guérillon C; Larrieu D; Pedeux R
    Cell Mol Life Sci; 2013 Oct; 70(20):3753-72. PubMed ID: 23412501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.
    Zhu Q; Pearson-White S; Luo K
    Mol Cell Biol; 2005 Dec; 25(24):10731-44. PubMed ID: 16314499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling.
    Esmaeili M; Pungsrinont T; Schaefer A; Baniahmad A
    J Mol Med (Berl); 2016 Oct; 94(10):1167-1179. PubMed ID: 27305909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression.
    Luo DD; Phillips A; Fraser D
    Am J Pathol; 2010 Mar; 176(3):1139-47. PubMed ID: 20093492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of thyroid hormone-dependent gene expression in Xenopus laevis by INhibitor of Growth (ING) proteins.
    Helbing CC; Wagner MJ; Pettem K; Johnston J; Heimeier RA; Veldhoen N; Jirik FR; Shi YB; Browder LW
    PLoS One; 2011; 6(12):e28658. PubMed ID: 22163049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downregulation of SnoN oncoprotein induced by antibiotics anisomycin and puromycin positively regulates transforming growth factor-β signals.
    Hernández-Damián J; Tecalco-Cruz AC; Ríos-López DG; Vázquez-Victorio G; Vázquez-Macías A; Caligaris C; Sosa-Garrocho M; Flores-Pérez B; Romero-Avila M; Macías-Silva M
    Biochim Biophys Acta; 2013 Nov; 1830(11):5049-58. PubMed ID: 23872350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins.
    Krakowski AR; Laboureau J; Mauviel A; Bissell MJ; Luo K
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12437-42. PubMed ID: 16109768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.
    Baldwin RL; Tran H; Karlan BY
    Cancer Res; 2003 Mar; 63(6):1413-9. PubMed ID: 12649207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.
    Yang J; Dai C; Liu Y
    J Am Soc Nephrol; 2005 Jan; 16(1):68-78. PubMed ID: 15537870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation.
    Bonni S; Wang HR; Causing CG; Kavsak P; Stroschein SL; Luo K; Wrana JL
    Nat Cell Biol; 2001 Jun; 3(6):587-95. PubMed ID: 11389444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The downregulation of SnoN expression in human renal proximal tubule epithelial cells under high-glucose conditions is mediated by an increase in Smurf2 expression through TGF-β1 signaling.
    Li X; Diao Z; Ding J; Liu R; Wang L; Huang W; Liu W
    Int J Mol Med; 2016 Feb; 37(2):415-22. PubMed ID: 26743567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockdown of inhibitor of growth protein 2 inhibits cell invasion and enhances chemosensitivity to 5-FU in human gastric cancer cells.
    Zhong J; Yang L; Liu N; Zheng J; Lin CY
    Dig Dis Sci; 2013 Nov; 58(11):3189-97. PubMed ID: 23864195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins.
    He J; Tegen SB; Krawitz AR; Martin GS; Luo K
    J Biol Chem; 2003 Aug; 278(33):30540-7. PubMed ID: 12764135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation.
    Levy L; Howell M; Das D; Harkin S; Episkopou V; Hill CS
    Mol Cell Biol; 2007 Sep; 27(17):6068-83. PubMed ID: 17591695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SnoN: bridging neurobiology and cancer biology.
    Pot I; Ikeuchi Y; Bonni A; Bonni S
    Curr Mol Med; 2010 Oct; 10(7):667-73. PubMed ID: 20712586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple ING1 and ING2 genes in Xenopus laevis and evidence for differential association of thyroid hormone receptors and ING proteins to their promoters.
    Wagner MJ; Helbing CC
    Biochim Biophys Acta; 2008 Mar; 1779(3):152-63. PubMed ID: 18167318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation.
    Doyon Y; Cayrou C; Ullah M; Landry AJ; Côté V; Selleck W; Lane WS; Tan S; Yang XJ; Côté J
    Mol Cell; 2006 Jan; 21(1):51-64. PubMed ID: 16387653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.
    Macias-Silva M; Li W; Leu JI; Crissey MA; Taub R
    J Biol Chem; 2002 Aug; 277(32):28483-90. PubMed ID: 12023281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.