These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18334534)

  • 21. Landscape of RNA polyadenylation in E. coli.
    Maes A; Gracia C; Innocenti N; Zhang K; Aurell E; Hajnsdorf E
    Nucleic Acids Res; 2017 Mar; 45(5):2746-2756. PubMed ID: 28426097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of polyadenylation in regulation of the flagella cascade and motility in Escherichia coli.
    Maes A; Gracia C; Bréchemier D; Hamman P; Chatre E; Lemelle L; Bertin PN; Hajnsdorf E
    Biochimie; 2013 Feb; 95(2):410-8. PubMed ID: 23123524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A conserved small RNA promotes discoordinate expression of the glmUS operon mRNA to activate GlmS synthesis.
    Urban JH; Papenfort K; Thomsen J; Schmitz RA; Vogel J
    J Mol Biol; 2007 Oct; 373(3):521-8. PubMed ID: 17854828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate.
    Klein DJ; Ferré-D'Amaré AR
    Science; 2006 Sep; 313(5794):1752-6. PubMed ID: 16990543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12.
    Plumbridge JA; Cochet O; Souza JM; Altamirano MM; Calcagno ML; Badet B
    J Bacteriol; 1993 Aug; 175(16):4951-6. PubMed ID: 8349539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The response regulator SprE (RssB) modulates polyadenylation and mRNA stability in Escherichia coli.
    Carabetta VJ; Mohanty BK; Kushner SR; Silhavy TJ
    J Bacteriol; 2009 Nov; 191(22):6812-21. PubMed ID: 19767441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection.
    Link KH; Guo L; Breaker RR
    Nucleic Acids Res; 2006; 34(17):4968-75. PubMed ID: 16982640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel.
    Mouilleron S; Badet-Denisot MA; Golinelli-Pimpaneau B
    J Mol Biol; 2008 Apr; 377(4):1174-85. PubMed ID: 18295797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noncoding RNA control of the making and breaking of sugars.
    Görke B; Vogel J
    Genes Dev; 2008 Nov; 22(21):2914-25. PubMed ID: 18981470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Influence of nagE and manX knockout with red homologous recombination on the microbial production of glucosamine by Escherichia coli].
    Chen X; Liu L; Li J; Liu J; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):305-19. PubMed ID: 22712389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis.
    Assrir N; Richez C; Durand P; Guittet E; Badet B; Lescop E; Badet-Denisot MA
    Biochimie; 2014 Feb; 97():39-48. PubMed ID: 24075873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyadenylation of oop RNA in the regulation of bacteriophage lambda development.
    Wróbel B; Herman-Antosiewicz A; Szalewska-Pałasz S; Wegrzyn G
    Gene; 1998 May; 212(1):57-65. PubMed ID: 9661664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(A) polymerase is required for RyhB sRNA stability and function in
    Sinha D; Matz LM; Cameron TA; De Lay NR
    RNA; 2018 Nov; 24(11):1496-1511. PubMed ID: 30061117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics.
    Banás P; Walter NG; Sponer J; Otyepka M
    J Phys Chem B; 2010 Jul; 114(26):8701-12. PubMed ID: 20536206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells.
    Mohanty BK; Kushner SR
    Nucleic Acids Res; 2006; 34(19):5695-704. PubMed ID: 17040898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism.
    Gonzalez GM; Durica-Mitic S; Hardwick SW; Moncrieffe MC; Resch M; Neumann P; Ficner R; Görke B; Luisi BF
    Nucleic Acids Res; 2017 Oct; 45(18):10845-10860. PubMed ID: 28977623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ammonia channeling in bacterial glucosamine-6-phosphate synthase (Glms): molecular dynamics simulations and kinetic studies of protein mutants.
    Floquet N; Mouilleron S; Daher R; Maigret B; Badet B; Badet-Denisot MA
    FEBS Lett; 2007 Jun; 581(16):2981-7. PubMed ID: 17559838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription start sites in the promoter region of the Escherichia coli pcnB (plasmid copy number) gene coding for poly(A) polymerase I.
    Jasiecki J; Wegrzyn G
    Plasmid; 2006 Mar; 55(2):169-72. PubMed ID: 16330100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis.
    Bearne SL; Blouin C
    J Biol Chem; 2000 Jan; 275(1):135-40. PubMed ID: 10617596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.