These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18334534)

  • 41. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae.
    Lee SW; Oh MK
    Metab Eng; 2015 Mar; 28():143-150. PubMed ID: 25596509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid degradation of polyadenylated oop RNA.
    Szalewska-Pałasz A; Wróbel B; Wegrzyn G
    FEBS Lett; 1998 Jul; 432(1-2):70-2. PubMed ID: 9710253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of YvcJ, a conserved P-loop-containing protein, and its implication in competence in Bacillus subtilis.
    Luciano J; Foulquier E; Fantino JR; Galinier A; Pompeo F
    J Bacteriol; 2009 Mar; 191(5):1556-64. PubMed ID: 19074378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular biology. Versatility of self-cleaving ribozymes.
    Been MD
    Science; 2006 Sep; 313(5794):1745-7. PubMed ID: 16990539
    [No Abstract]   [Full Text] [Related]  

  • 45. Growth-rate dependent RNA polyadenylation in Escherichia coli.
    Jasiecki J; Wegrzyn G
    EMBO Rep; 2003 Feb; 4(2):172-7. PubMed ID: 12612607
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer.
    Mouilleron S; Badet-Denisot MA; Pecqueur L; Madiona K; Assrir N; Badet B; Golinelli-Pimpaneau B
    J Biol Chem; 2012 Oct; 287(41):34533-46. PubMed ID: 22851174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium.
    Foley S; Stolarczyk E; Mouni F; Brassart C; Vidal O; Aïssi E; Bouquelet S; Krzewinski F
    Arch Microbiol; 2008 Feb; 189(2):157-67. PubMed ID: 17943273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of gene expression by small RNA.
    Fröhlich KS; Vogel J
    Curr Opin Microbiol; 2009 Dec; 12(6):674-82. PubMed ID: 19880344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of 5'-End Phosphorylation for Small RNA Stability and Target Regulation In Vivo.
    Schilder A; Göpel Y; Khan MA; Görke B
    Methods Mol Biol; 2024; 2741():255-272. PubMed ID: 38217658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphorylation of Escherichia coli poly(A) polymerase I and effects of this modification on the enzyme activity.
    Jasiecki J; Wegrzyn G
    FEMS Microbiol Lett; 2006 Aug; 261(1):118-22. PubMed ID: 16842368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Nitrogen Regulatory PII Protein (GlnB) and
    Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of the Escherichia coli glucosamine-6-phosphate synthase activity by isothermal titration calorimetry and differential scanning calorimetry.
    Valerio-Lepiniec M; Aumont-Nicaise M; Roux C; Raynal B; England P; Badet B; Badet-Denisot MA; Desmadril M
    Arch Biochem Biophys; 2010 Jun; 498(2):95-104. PubMed ID: 20416269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of a bacterial ribonucleoprotein complex central to the control of cell envelope biogenesis.
    Islam MS; Hardwick SW; Quell L; Durica-Mitic S; Chirgadze DY; Görke B; Luisi BF
    EMBO J; 2023 Jan; 42(2):e112574. PubMed ID: 36504162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The interplay of Hfq, poly(A) polymerase I and exoribonucleases at the 3' ends of RNAs resulting from Rho-independent termination: A tentative model.
    Régnier P; Hajnsdorf E
    RNA Biol; 2013 Apr; 10(4):602-9. PubMed ID: 23392248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rhizobium leguminosarum has two glucosamine synthases, GlmS and NodM, required for nodulation and development of nitrogen-fixing nodules.
    Marie C; Barny MA; Downie JA
    Mol Microbiol; 1992 Apr; 6(7):843-51. PubMed ID: 1602964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Residual polyadenylation in poly(A) polymerase I (pcnB ) mutants of Escherichia coli does not result from the activity encoded by the f310 gene.
    Mohanty BK; Kushner SR
    Mol Microbiol; 1999 Dec; 34(5):1109-19. PubMed ID: 10594834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular cloning and overexpression of the glucosamine synthetase gene from Escherichia coli.
    Dutka-Malen S; Mazodier P; Badet B
    Biochimie; 1988 Feb; 70(2):287-90. PubMed ID: 3134953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Wang Y; Lv X; Li J; Du G; Liu L
    Biotechnol J; 2019 Mar; 14(3):e1800264. PubMed ID: 30105781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The response regulator SprE (RssB) is required for maintaining poly(A) polymerase I-degradosome association during stationary phase.
    Carabetta VJ; Silhavy TJ; Cristea IM
    J Bacteriol; 2010 Jul; 192(14):3713-21. PubMed ID: 20472786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans.
    Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W
    J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.