BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 18334997)

  • 21. Degradation of mRNA in bacteria: emergence of ubiquitous features.
    Régnier P; Arraiano CM
    Bioessays; 2000 Mar; 22(3):235-44. PubMed ID: 10684583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulated deadenylation in vitro.
    Goldstrohm AC; Hook BA; Wickens M
    Methods Enzymol; 2008; 448():77-106. PubMed ID: 19111172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of poly(A) tail length.
    Eckmann CR; Rammelt C; Wahle E
    Wiley Interdiscip Rev RNA; 2011; 2(3):348-61. PubMed ID: 21957022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of Puf proteins in mRNA degradation and translation.
    Miller MA; Olivas WM
    Wiley Interdiscip Rev RNA; 2011; 2(4):471-92. PubMed ID: 21957038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct expression patterns of the subunits of the CCR4-NOT deadenylase complex during neural development.
    Chen C; Ito K; Takahashi A; Wang G; Suzuki T; Nakazawa T; Yamamoto T; Yokoyama K
    Biochem Biophys Res Commun; 2011 Jul; 411(2):360-4. PubMed ID: 21741365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
    Grigull J; Mnaimneh S; Pootoolal J; Robinson MD; Hughes TR
    Mol Cell Biol; 2004 Jun; 24(12):5534-47. PubMed ID: 15169913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical and in silico identification of the active site and the catalytic mechanism of the circadian deadenylase HESPERIN.
    Beta RAA; Kyritsis A; Douka V; Papanastasi E; Rizouli M; Leonidas DD; Vlachakis D; Balatsos NAA
    FEBS Open Bio; 2022 May; 12(5):1036-1049. PubMed ID: 33095977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity and Function of Deadenylases.
    Harnisch C; Moritz B; Rammelt C; Temme C; Wahle E
    Enzymes; 2012; 31():181-211. PubMed ID: 27166446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of circadian regulation of poly(A)-tail length.
    Kojima S; Green CB
    Methods Enzymol; 2015; 551():387-403. PubMed ID: 25662466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo.
    Yao G; Chiang YC; Zhang C; Lee DJ; Laue TM; Denis CL
    Mol Cell Biol; 2007 Sep; 27(17):6243-53. PubMed ID: 17620415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bringing the role of mRNA decay in the control of gene expression into focus.
    Wilusz CJ; Wilusz J
    Trends Genet; 2004 Oct; 20(10):491-7. PubMed ID: 15363903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae.
    Hilgers V; Teixeira D; Parker R
    RNA; 2006 Oct; 12(10):1835-45. PubMed ID: 16940550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Messenger RNA decay in mammalian cells: the exonuclease perspective.
    Fritz DT; Bergman N; Kilpatrick WJ; Wilusz CJ; Wilusz J
    Cell Biochem Biophys; 2004; 41(2):265-78. PubMed ID: 15475613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length.
    Woolstencroft RN; Beilharz TH; Cook MA; Preiss T; Durocher D; Tyers M
    J Cell Sci; 2006 Dec; 119(Pt 24):5178-92. PubMed ID: 17158920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fluorescence-based assay suitable for quantitative analysis of deadenylase enzyme activity.
    Maryati M; Kaur I; Jadhav GP; Olotu-Umoren L; Oveh B; Hashmi L; Fischer PM; Winkler GS
    Nucleic Acids Res; 2014 Mar; 42(5):e30. PubMed ID: 24170810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal Structure of Human Nocturnin Catalytic Domain.
    Estrella MA; Du J; Korennykh A
    Sci Rep; 2018 Nov; 8(1):16294. PubMed ID: 30389976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive phylogenetic analysis of deadenylases.
    Pavlopoulou A; Vlachakis D; Balatsos NA; Kossida S
    Evol Bioinform Online; 2013; 9():491-7. PubMed ID: 24348009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and
    Li CY; Liang Z; Hu Y; Zhang H; Setiasabda KD; Li J; Ma S; Xia X; Kuang Y
    Mol Ther Nucleic Acids; 2022 Dec; 30():300-310. PubMed ID: 36320322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mystery of mitochondrial RNases.
    Bruni F; Gramegna P; Lightowlers RN; Chrzanowska-Lightowlers ZM
    Biochem Soc Trans; 2012 Aug; 40(4):865-9. PubMed ID: 22817749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quality Control of mRNA Vaccines by Synthetic Ribonucleases: Analysis of the Poly-A-Tail.
    Zellmann F; Schmauk N; Murmann N; Böhm M; Schwenger A; Göbel MW
    Chembiochem; 2024 May; ():e202400347. PubMed ID: 38742914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.