These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Pechan T; Cohen A; Williams WP; Luthe DS Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13319-23. PubMed ID: 12235370 [TBL] [Abstract][Full Text] [Related]
5. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Lopez L; Camas A; Shivaji R; Ankala A; Williams P; Luthe D Planta; 2007 Jul; 226(2):517-27. PubMed ID: 17351787 [TBL] [Abstract][Full Text] [Related]
6. Relative concentration of Cry1A in maize leaves and cotton bolls with diverse chlorophyll content and corresponding larval development of fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) on maize whorl leaf profiles. Abel CA; Adamczyk JJ J Econ Entomol; 2004 Oct; 97(5):1737-44. PubMed ID: 15568367 [TBL] [Abstract][Full Text] [Related]
7. Assessment of experimental Bt events against fall armyworm and corn earworm in field corn. Buntin GD; Flanders KL; Lynch RE J Econ Entomol; 2004 Apr; 97(2):259-64. PubMed ID: 15154443 [TBL] [Abstract][Full Text] [Related]
8. Impact of Lepidoptera (Crambidae, Noctuidae, and Pyralidae) Pests on Corn Containing Pyramided Bt Traits and a Blended Refuge in the Southern United States. Reay-Jones FP; Bessin RT; Brewer MJ; Buntin DG; Catchot AL; Cook DR; Flanders KL; Kerns DL; Porter RP; Reisig DD; Stewart SD; Rice ME J Econ Entomol; 2016 Aug; 109(4):1859-71. PubMed ID: 27329627 [TBL] [Abstract][Full Text] [Related]
9. Aboveground to belowground herbivore defense signaling in maize: a two-way street? Luthe DS; Gill T; Zhu L; Lopéz L; Pechanova O; Shivaji R; Ankala A; Williams WP Plant Signal Behav; 2011 Jan; 6(1):126-9. PubMed ID: 21270535 [TBL] [Abstract][Full Text] [Related]
10. Baseline sensitivity of lepidopteran corn pests in India to Cry1Ab insecticidal protein of Bacillus thuringiensis. Jalali SK; Lalitha Y; Kamath SP; Mohan KS; Head GP Pest Manag Sci; 2010 Aug; 66(8):809-15. PubMed ID: 20602522 [TBL] [Abstract][Full Text] [Related]
11. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
12. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Gómez I; Ocelotl J; Sánchez J; Aguilar-Medel S; Peña-Chora G; Lina-Garcia L; Bravo A; Soberón M Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887720 [TBL] [Abstract][Full Text] [Related]
13. Toxicity and mode of action of Bacillus thuringiensis Cry proteins in the Mediterranean corn borer, Sesamia nonagrioides (Lefebvre). González-Cabrera J; Farinós GP; Caccia S; Díaz-Mendoza M; Castañera P; Leonardi MG; Giordana B; Ferré J Appl Environ Microbiol; 2006 Apr; 72(4):2594-600. PubMed ID: 16597962 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. Siebert MW; Nolting SP; Hendrix W; Dhavala S; Craig C; Leonard BR; Stewart SD; All J; Musser FR; Buntin GD; Samuel L J Econ Entomol; 2012 Oct; 105(5):1825-34. PubMed ID: 23156183 [TBL] [Abstract][Full Text] [Related]
15. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis. Coates BS Curr Opin Insect Sci; 2016 Jun; 15():70-7. PubMed ID: 27436734 [TBL] [Abstract][Full Text] [Related]
16. β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). Girón-Calva PS; Lopez C; Albacete A; Albajes R; Christou P; Eizaguirre M PLoS One; 2021; 16(2):e0246696. PubMed ID: 33591990 [TBL] [Abstract][Full Text] [Related]
17. Lepidoptera (Crambidae, Noctuidae, and Pyralidae) Injury to Corn Containing Single and Pyramided Bt Traits, and Blended or Block Refuge, in the Southern United States. Reisig DD; Akin DS; All JN; Bessin RT; Brewer MJ; Buntin DG; Catchot AL; Cook D; Flanders KL; Huang FN; Johnson DW; Leonard BR; Mcleod PJ; Porter RP; Reay-Jones FP; Tindall KV; Stewart SD; Troxclair NN; Youngman RR; Rice ME J Econ Entomol; 2015 Feb; 108(1):157-65. PubMed ID: 26470116 [TBL] [Abstract][Full Text] [Related]
18. Plant-incorporated Bacillus thuringiensis resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) in corn. Buntin GD; All JN; Lee RD; Wilson DM J Econ Entomol; 2004 Oct; 97(5):1603-11. PubMed ID: 15568349 [TBL] [Abstract][Full Text] [Related]
19. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
20. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Betz FS; Hammond BG; Fuchs RL Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]