These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 18335203)
41. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil. Kaur H; Wang L; Stawniak N; Sloan R; van Erp H; Eastmond P; Bancroft I Plant Biotechnol J; 2020 Apr; 18(4):983-991. PubMed ID: 31553825 [TBL] [Abstract][Full Text] [Related]
42. Breeding response of transcript profiling in developing seeds of Brassica napus. Hu Y; Wu G; Cao Y; Wu Y; Xiao L; Li X; Lu C BMC Mol Biol; 2009 May; 10():49. PubMed ID: 19463193 [TBL] [Abstract][Full Text] [Related]
43. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Udall JA; Quijada PA; Lambert B; Osborn TC Theor Appl Genet; 2006 Aug; 113(4):597-609. PubMed ID: 16767446 [TBL] [Abstract][Full Text] [Related]
44. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. Wang Y; Chen W; Chu P; Wan S; Yang M; Wang M; Guan R BMC Plant Biol; 2016 Aug; 16(1):178. PubMed ID: 27538713 [TBL] [Abstract][Full Text] [Related]
45. Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Milkowski C; Strack D Planta; 2010 Jun; 232(1):19-35. PubMed ID: 20428885 [TBL] [Abstract][Full Text] [Related]
46. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Su ZZ; Wang T; Shrivastava N; Chen YY; Liu X; Sun C; Yin Y; Gao QK; Lou BG Microbiol Res; 2017 Jun; 199():29-39. PubMed ID: 28454707 [TBL] [Abstract][Full Text] [Related]
47. Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Clauss K; von Roepenack-Lahaye E; Böttcher C; Roth MR; Welti R; Erban A; Kopka J; Scheel D; Milkowski C; Strack D Plant Physiol; 2011 Mar; 155(3):1127-45. PubMed ID: 21248075 [TBL] [Abstract][Full Text] [Related]
48. Development of B. carinata with super-high erucic acid content through interspecific hybridization. Roslinsky V; Falk KC; Gaebelein R; Mason AS; Eynck C Theor Appl Genet; 2021 Oct; 134(10):3167-3181. PubMed ID: 34269830 [TBL] [Abstract][Full Text] [Related]
49. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. Wang N; Wang Y; Tian F; King GJ; Zhang C; Long Y; Shi L; Meng J New Phytol; 2008; 180(4):751-65. PubMed ID: 18811617 [TBL] [Abstract][Full Text] [Related]
50. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Zhao Q; Wu J; Cai G; Yang Q; Shahid M; Fan C; Zhang C; Zhou Y Plant Biotechnol J; 2019 Dec; 17(12):2313-2324. PubMed ID: 31037811 [TBL] [Abstract][Full Text] [Related]
51. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye J; Yang Y; Chen B; Shi J; Luo M; Zhan J; Wang X; Liu G; Wang H BMC Genomics; 2017 Jan; 18(1):71. PubMed ID: 28077071 [TBL] [Abstract][Full Text] [Related]
52. QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Song J; Li B; Cui Y; Zhuo C; Gu Y; Hu K; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299178 [TBL] [Abstract][Full Text] [Related]
53. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Wu G; Wu Y; Xiao L; Li X; Lu C Theor Appl Genet; 2008 Feb; 116(4):491-9. PubMed ID: 18075728 [TBL] [Abstract][Full Text] [Related]
54. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Mahmood T; Rahman MH; Stringam GR; Yeh F; Good AG Theor Appl Genet; 2006 Nov; 113(7):1211-20. PubMed ID: 16960718 [TBL] [Abstract][Full Text] [Related]
55. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Zhao J; Becker HC; Zhang D; Zhang Y; Ecke W Theor Appl Genet; 2006 Jun; 113(1):33-8. PubMed ID: 16614833 [TBL] [Abstract][Full Text] [Related]
56. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Fu Y; Wei D; Dong H; He Y; Cui Y; Mei J; Wan H; Li J; Snowdon R; Friedt W; Li X; Qian W Sci Rep; 2015 Sep; 5():14407. PubMed ID: 26394547 [TBL] [Abstract][Full Text] [Related]
57. [The Use of Specific DNA Markers for the Identification of Alleles of the FAD3 Genes in Rape (Brassica napus L.)]. Lemesh VA; Mozgova GV; Grushetskaya ZE; Sidorenko EV; Pilyuk YE; Bakanovskaya AV Genetika; 2015 Aug; 51(8):895-904. PubMed ID: 26601489 [TBL] [Abstract][Full Text] [Related]
58. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. Zhu Q; King GJ; Liu X; Shan N; Borpatragohain P; Baten A; Wang P; Luo S; Zhou Q PLoS One; 2019; 14(8):e0221578. PubMed ID: 31442274 [TBL] [Abstract][Full Text] [Related]
59. Development of genic cleavage markers in association with seed glucosinolate content in canola. Fu Y; Lu K; Qian L; Mei J; Wei D; Peng X; Xu X; Li J; Frauen M; Dreyer F; Snowdon RJ; Qian W Theor Appl Genet; 2015 Jun; 128(6):1029-37. PubMed ID: 25748114 [TBL] [Abstract][Full Text] [Related]
60. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Yong HY; Wang C; Bancroft I; Li F; Wu X; Kitashiba H; Nishio T Planta; 2015 Jul; 242(1):313-26. PubMed ID: 25921693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]