These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18335582)

  • 21. Cyclic 3',5'-nucleotide diesterases in dynamics of cAMP and cGMP in rat collecting duct cells.
    Yamaki M; McIntyre S; Rassier ME; Schwartz JH; Dousa TP
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F957-64. PubMed ID: 1320333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclic AMP compartmentation due to increased cAMP-phosphodiesterase activity in transgenic mice with a cardiac-directed expression of the human adenylyl cyclase type 8 (AC8).
    Georget M; Mateo P; Vandecasteele G; Lipskaia L; Defer N; Hanoune J; Hoerter J; Lugnier C; Fischmeister R
    FASEB J; 2003 Aug; 17(11):1380-91. PubMed ID: 12890691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1): review.
    Sharma RK; Das SB; Lakshmikuttyamma A; Selvakumar P; Shrivastav A
    Int J Mol Med; 2006 Jul; 18(1):95-105. PubMed ID: 16786160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of thapsigargin-induced calcium mobilisation by cyclic AMP-elevating agents in human lymphocytes is insensitive to the action of the protein kinase A inhibitor H-89.
    de la Rosa LA; Vilariño N; Vieytes MR; Botana LM
    Cell Signal; 2001 Jun; 13(6):441-9. PubMed ID: 11384843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization.
    Matthiesen K; Nielsen J
    PLoS One; 2011; 6(9):e24392. PubMed ID: 21931705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective inhibition of a high affinity type IV cyclic AMP phosphodiesterase in bovine trachealis by AH 21-132. Relevance to the spasmolytic and anti-spasmogenic actions of AH 21-132 in the intact tissue.
    Giembycz MA; Barnes PJ
    Biochem Pharmacol; 1991 Jul; 42(3):663-77. PubMed ID: 1650218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional plasticity of cyclic AMP hydrolysis in rat adenohypophysial corticotroph cells.
    Ang KL; Antoni FA
    Cell Signal; 2002 May; 14(5):445-52. PubMed ID: 11882389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capacitative Ca2+ entry is involved in cAMP synthesis in mouse parotid acini.
    Watson EL; Wu Z; Jacobson KL; Storm DR; Singh JC; Ott SM
    Am J Physiol; 1998 Mar; 274(3):C557-65. PubMed ID: 9530086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa.
    Lefièvre L; de Lamirande E; Gagnon C
    Biol Reprod; 2002 Aug; 67(2):423-30. PubMed ID: 12135876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes.
    Xue B; Greenberg AG; Kraemer FB; Zemel MB
    FASEB J; 2001 Nov; 15(13):2527-9. PubMed ID: 11641262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reciprocal regulation of calcium dependent and calcium independent cyclic AMP hydrolysis by protein phosphorylation.
    Ang KL; Antoni FA
    J Neurochem; 2002 May; 81(3):422-33. PubMed ID: 12065651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of cyclic nucleotide phosphodiesterase isoforms in the media layer of the main pulmonary artery.
    Pauvert O; Salvail D; Rousseau E; Lugnier C; Marthan R; Savineau JP
    Biochem Pharmacol; 2002 May; 63(9):1763-72. PubMed ID: 12007579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells.
    Ortiz-Capisano MC; Liao TD; Ortiz PA; Beierwaltes WH
    Am J Physiol Regul Integr Comp Physiol; 2009 Nov; 297(5):R1469-76. PubMed ID: 19741056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity of calcium action in regulation of mammalian calmodulin-dependent cyclic nucleotide phosphodiesterase.
    Sharma RK
    Indian J Biochem Biophys; 2003 Apr; 40(2):77-91. PubMed ID: 22900295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphodiesterases 1 and 2 regulate cellular cGMP level in rabbit submandibular gland cells.
    Michikawa H; Sugiya H; Yoshigaki T; Fujita-Yoshigaki J; Furuyama S
    Int J Biochem Cell Biol; 2005 Apr; 37(4):876-86. PubMed ID: 15694846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis.
    Torphy TJ; Zhou HL; Burman M; Huang LB
    Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of cyclic nucleotide phosphodiesterase isoenzymes in contractile responses of denuded rat aorta related to various Ca2+ sources.
    Noguera MA; Ivorra MD; Lugnier C; D'Ocon P
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Jun; 363(6):612-9. PubMed ID: 11414656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphodiesterase 1C integrates store-operated calcium entry and cAMP signaling in leading-edge protrusions of migrating human arterial myocytes.
    Brzezinska P; Simpson NJ; Hubert F; Jacobs AN; Umana MB; MacKeil JL; Burke-Kleinman J; Payne DM; Ferguson AV; Maurice DH
    J Biol Chem; 2021; 296():100606. PubMed ID: 33789162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Ca
    Kogiso H; Hosogi S; Ikeuchi Y; Tanaka S; Inui T; Marunaka Y; Nakahari T
    Exp Physiol; 2018 Mar; 103(3):381-390. PubMed ID: 29282782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.