These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 18335721)
1. Experimental set-up and sensory glove interface for microsurgery. Amirouche F; Martin JR; Gonzalez M; Fergusson L Proc Inst Mech Eng H; 2008 Jan; 222(1):89-99. PubMed ID: 18335721 [TBL] [Abstract][Full Text] [Related]
2. MicroSim - a microsurgical training simulator. Hüsken N; Schuppe O; Sismanidis E; Beier F Stud Health Technol Inform; 2013; 184():205-9. PubMed ID: 23400157 [TBL] [Abstract][Full Text] [Related]
3. Objective Surgical Skill Assessment: An Initial Experience by Means of a Sensory Glove Paving the Way to Open Surgery Simulation? Saggio G; Lazzaro A; Sbernini L; Carrano FM; Passi D; Corona A; Panetta V; Gaspari AL; Di Lorenzo N J Surg Educ; 2015; 72(5):910-7. PubMed ID: 26089159 [TBL] [Abstract][Full Text] [Related]
4. A Deep Learning Approach to Classify Surgical Skill in Microsurgery Using Force Data from a Novel Sensorised Surgical Glove. Xu J; Anastasiou D; Booker J; Burton OE; Layard Horsfall H; Salvadores Fernandez C; Xue Y; Stoyanov D; Tiwari MK; Marcus HJ; Mazomenos EB Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960645 [TBL] [Abstract][Full Text] [Related]
5. Development of a microsurgery training system. Wang F; Su E; Burdet E; Bleuler H Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1935-8. PubMed ID: 19163069 [TBL] [Abstract][Full Text] [Related]
6. NeuroSim--the prototype of a neurosurgical training simulator. Beier F; Diederich S; Schmieder K; Männer R Stud Health Technol Inform; 2011; 163():51-6. PubMed ID: 21335757 [TBL] [Abstract][Full Text] [Related]
7. Bench model surgical skill training improves novice ability to multitask: a randomized controlled study. Grierson L; Melnyk M; Jowlett N; Backstein D; Dubrowski A Stud Health Technol Inform; 2011; 163():192-8. PubMed ID: 21335787 [TBL] [Abstract][Full Text] [Related]
8. A computerized bioskills system for surgical skills training in total knee replacement. Conditt MA; Noble PC; Thompson MT; Ismaily SK; Moy GJ; Mathis KB Proc Inst Mech Eng H; 2007 Jan; 221(1):61-9. PubMed ID: 17315769 [TBL] [Abstract][Full Text] [Related]
9. How do we assess microsurgical skill? Kalu PU; Atkins J; Baker D; Green CJ; Butler PE Microsurgery; 2005; 25(1):25-9. PubMed ID: 15645419 [TBL] [Abstract][Full Text] [Related]
10. The development of a haptic interface for the Virtual Translumenal Endoscopic Surgical Trainer (VTEST. Dargar S; Solley T; Nemani A; Brino C; Sankaranarayanan G; De S Stud Health Technol Inform; 2013; 184():106-8. PubMed ID: 23400139 [TBL] [Abstract][Full Text] [Related]
11. New trends in translational microsurgery. Kobayashi E Acta Cir Bras; 2018 Sep; 33(9):862-867. PubMed ID: 30328919 [TBL] [Abstract][Full Text] [Related]
13. The validation of an instrumented simulator for the assessment of performance and outcome of knot tying skill: a pilot study. Rojas D; Cristancho S; Rueda C; Grierson L; Monclou A; Dubrowski A Stud Health Technol Inform; 2011; 163():517-23. PubMed ID: 21335849 [TBL] [Abstract][Full Text] [Related]
14. Modelling and evaluation of surgical performance using hidden Markov models. Megali G; Sinigaglia S; Tonet O; Dario P IEEE Trans Biomed Eng; 2006 Oct; 53(10):1911-9. PubMed ID: 17019854 [TBL] [Abstract][Full Text] [Related]
15. Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery. Barrow A; Akhtar K; Gupte C; Bello F Stud Health Technol Inform; 2013; 184():43-7. PubMed ID: 23400127 [TBL] [Abstract][Full Text] [Related]
16. Assessing suturing techniques using a virtual reality surgical simulator. Kazemi H; Rappel JK; Poston T; Hai Lim B; Burdet E; Leong Teo C Microsurgery; 2010 Sep; 30(6):479-86. PubMed ID: 20201052 [TBL] [Abstract][Full Text] [Related]
17. Prior experience in micro-surgery may improve the surgeon's performance in robotic surgical training. Perez M; Perrenot C; Tran N; Hossu G; Felblinger J; Hubert J Int J Med Robot; 2013 Sep; 9(3):351-8. PubMed ID: 23733587 [TBL] [Abstract][Full Text] [Related]
18. Validation of novel and objective measures of microsurgical skill: Hand-motion analysis and stereoscopic visual acuity. Grober ED; Hamstra SJ; Wanzel KR; Reznick RK; Matsumoto ED; Sidhu RS; Jarvi KA Microsurgery; 2003; 23(4):317-22. PubMed ID: 12942521 [TBL] [Abstract][Full Text] [Related]
19. Active and Passive Haptic Training Approaches in VR Laparoscopic Surgery Training. Marutani T; Kato T; Tagawa K; Tanaka HT; Komori M; Kurumi Y; Morikawa S Stud Health Technol Inform; 2016; 220():215-8. PubMed ID: 27046581 [TBL] [Abstract][Full Text] [Related]
20. Advanced da Vinci Surgical System simulator for surgeon training and operation planning. Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]