These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18335915)

  • 1. On the uptake of ammonia by the water/vapor interface.
    Carignano MA; Jacob MM; Avila EE
    J Phys Chem A; 2008 Apr; 112(16):3676-9. PubMed ID: 18335915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonded structure and dynamics of liquid-vapor interface of water-ammonia mixture: an ab initio molecular dynamics study.
    Chakraborty D; Chandra A
    J Chem Phys; 2011 Sep; 135(11):114510. PubMed ID: 21950874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of binding energies of a water molecule in the water liquid-vapor interface.
    Chempath S; Pratt LR
    J Phys Chem B; 2009 Apr; 113(13):4147-51. PubMed ID: 19006274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular-dynamics study of a model S(N)1 dissociation reaction at the water liquid/vapor interface.
    Winter N; Benjamin I
    J Chem Phys; 2005 May; 122(18):184717. PubMed ID: 15918757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-vapor interfacial properties of water-ammonia mixtures: dependence on ammonia concentration.
    Paul S; Chandra A
    J Chem Phys; 2005 Nov; 123(17):174712. PubMed ID: 16375562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ab initio molecular dynamics study of the aqueous liquid-vapor interface.
    Kuo IF; Mundy CJ
    Science; 2004 Jan; 303(5658):658-60. PubMed ID: 14752157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating hydroxide anion interfacial activity by classical and multistate empirical valence bond molecular dynamics simulations.
    Wick CD; Dang LX
    J Phys Chem A; 2009 Jun; 113(22):6356-64. PubMed ID: 19391589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the liquid-vapor spinodal from interfacial properties obtained from molecular dynamics and lattice Boltzmann simulations.
    Imre AR; Mayer G; Házi G; Rozas R; Kraska T
    J Chem Phys; 2008 Mar; 128(11):114708. PubMed ID: 18361602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interface between water and a hydrophobic gas.
    Reed SK; Westacott RE
    Phys Chem Chem Phys; 2008 Aug; 10(31):4614-22. PubMed ID: 18665311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions.
    Brown MA; D'Auria R; Kuo IF; Krisch MJ; Starr DE; Bluhm H; Tobias DJ; Hemminger JC
    Phys Chem Chem Phys; 2008 Aug; 10(32):4778-84. PubMed ID: 18688520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions.
    Wick CD; Xantheas SS
    J Phys Chem B; 2009 Apr; 113(13):4141-6. PubMed ID: 19014185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrated excess proton at water-hydrophobic interfaces.
    Iuchi S; Chen H; Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4017-30. PubMed ID: 18821788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation of dimethyl succinate in a sodium hydroxide aqueous solution. A computational study.
    Sun X; Chang TM; Cao Y; Niwayama S; Hase WL; Dang LX
    J Phys Chem B; 2009 May; 113(18):6473-7. PubMed ID: 19402729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics approach to study the importance of solvent in protein interactions.
    Samsonov S; Teyra J; Pisabarro MT
    Proteins; 2008 Nov; 73(2):515-25. PubMed ID: 18452208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. II. Solvent evaporation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014903. PubMed ID: 19586120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of free surface of water-methanol mixtures. Analysis of the truly interfacial molecular layer in computer simulation.
    Partay LB; Jedlovszky P; Vincze A; Horvai G
    J Phys Chem B; 2008 May; 112(17):5428-38. PubMed ID: 18393551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The free energy of the metastable supersaturated vapor via restricted ensemble simulations. II. Effects of constraints and comparison with molecular dynamics simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2008 Jun; 128(23):234310. PubMed ID: 18570502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor-liquid interfacial properties of fully flexible Lennard-Jones chains.
    Blas FJ; MacDowell LG; de Miguel E; Jackson G
    J Chem Phys; 2008 Oct; 129(14):144703. PubMed ID: 19045161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of surfactant adsorption on solid surfaces: free-energy investigations.
    Xu Z; Yang X; Yang Z
    J Phys Chem B; 2008 Nov; 112(44):13802-11. PubMed ID: 18844400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.