These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18335980)
1. Selectivity of thiolate ligand and preference of substrate in model reactions of dissimilatory nitrate reductase. Majumdar A; Pal K; Sarkar S Inorg Chem; 2008 Apr; 47(8):3393-401. PubMed ID: 18335980 [TBL] [Abstract][Full Text] [Related]
2. Necessity of fine tuning in Mo(iv) bis(dithiolene) complexes to warrant nitrate reduction. Majumdar A; Pal K; Sarkar S Dalton Trans; 2009 Mar; (11):1927-38. PubMed ID: 19259562 [TBL] [Abstract][Full Text] [Related]
3. Chemistry of [Et4N][MoIV(SPh)(PPh3)(mnt)2] as an analogue of dissimilatory nitrate reductase with its inactivation on substitution of thiolate by chloride. Majumdar A; Pal K; Sarkar S J Am Chem Soc; 2006 Apr; 128(13):4196-7. PubMed ID: 16568972 [TBL] [Abstract][Full Text] [Related]
4. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family. Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273 [TBL] [Abstract][Full Text] [Related]
5. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473 [TBL] [Abstract][Full Text] [Related]
6. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase. Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810 [TBL] [Abstract][Full Text] [Related]
7. Analogue reaction systems of selenate reductase. Wang JJ; Tessier C; Holm RH Inorg Chem; 2006 Apr; 45(7):2979-88. PubMed ID: 16562954 [TBL] [Abstract][Full Text] [Related]
8. Photoelectron spectroscopy of the doubly-charged anions [MIVO(mnt)2]2- (M = Mo, W; mnt = S2C2(CN)2(2-): access to the ground and excited states of the [MVO(mnt)2]- anion. Waters T; Wang XB; Yang X; Zhang L; O'Hair RA; Wang LS; Wedd AG J Am Chem Soc; 2004 Apr; 126(16):5119-29. PubMed ID: 15099095 [TBL] [Abstract][Full Text] [Related]
9. Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics. Lim BS; Holm RH J Am Chem Soc; 2001 Mar; 123(9):1920-30. PubMed ID: 11456813 [TBL] [Abstract][Full Text] [Related]
10. Density functional theory studies of model complexes for molybdenum-dependent nitrate reductase active sites. Hofmann M J Biol Inorg Chem; 2007 Sep; 12(7):989-1001. PubMed ID: 17636351 [TBL] [Abstract][Full Text] [Related]
11. Reactivity of molecular dioxygen towards a series of isostructural dichloroiron(III) complexes with tripodal tetraamine ligands: general access to mu-oxodiiron(III) complexes and effect of alpha-fluorination on the reaction kinetics. Thallaj NK; Rotthaus O; Benhamou L; Humbert N; Elhabiri M; Lachkar M; Welter R; Albrecht-Gary AM; Mandon D Chemistry; 2008; 14(22):6742-53. PubMed ID: 18561351 [TBL] [Abstract][Full Text] [Related]
12. The use of a cis-dioxomolybdenum(VI) dinuclear complex with quadradentate 1,4-benzenediylbis(benzyldithiocarbamate)(2-) as model compound for the active site of oxo transfer molybdoenzymes: reactivity, kinetics, and catalysis. Moradi-Shoeili Z; Boghaei DM Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():210-5. PubMed ID: 22226677 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Bursakov SA; Carneiro C; Almendra MJ; Duarte RO; Caldeira J; Moura I; Moura JJ Biochem Biophys Res Commun; 1997 Oct; 239(3):816-22. PubMed ID: 9367852 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states. Coelho C; González PJ; Moura JG; Moura I; Trincão J; João Romão M J Mol Biol; 2011 May; 408(5):932-48. PubMed ID: 21419779 [TBL] [Abstract][Full Text] [Related]
15. Oxomolybdenum tetrathiolates with sterically encumbering ligands: modeling the effect of a protein matrix on electronic structure and reduction potentials. McNaughton RL; Mondal S; Nemykin VN; Basu P; Kirk ML Inorg Chem; 2005 Nov; 44(23):8216-22. PubMed ID: 16270958 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory study of model complexes for the revised nitrate reductase active site in Desulfovibrio desulfuricans NapA. Hofmann M J Biol Inorg Chem; 2009 Sep; 14(7):1023-35. PubMed ID: 19484273 [TBL] [Abstract][Full Text] [Related]
17. Trithio-chloro molybdate [MoClS3]-: a versatile precursor for molybdenum trisulfido complexes. Ito J; Ohki Y; Iwata M; Tatsumi K Inorg Chem; 2008 May; 47(9):3763-71. PubMed ID: 18345622 [TBL] [Abstract][Full Text] [Related]
18. Redox interplay of oxo-thio-tungsten centers with sulfur-donor co-ligands. Thomas S; Eagle AA; Sproules SA; Hill JP; White JM; Tiekink ER; George GN; Young CG Inorg Chem; 2003 Sep; 42(19):5909-16. PubMed ID: 12971759 [TBL] [Abstract][Full Text] [Related]
19. Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover. Fourmond V; Sabaty M; Arnoux P; Bertrand P; Pignol D; Léger C J Phys Chem B; 2010 Mar; 114(9):3341-7. PubMed ID: 20163092 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of nitrate reduction by Desulfovibrio desulfuricans nitrate reductase--a theoretical investigation. Leopoldini M; Russo N; Toscano M; Dulak M; Wesolowski TA Chemistry; 2006 Mar; 12(9):2532-41. PubMed ID: 16411255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]