BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

911 related articles for article (PubMed ID: 18335985)

  • 21. Electron impact ionization in helium nanodroplets: controlling fragmentation by active cooling of molecular ions.
    Lewis WK; Applegate BE; Sztáray J; Sztáray B; Baer T; Bemish RJ; Miller RE
    J Am Chem Soc; 2004 Sep; 126(36):11283-92. PubMed ID: 15355110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of cold ion-neutral clusters using superfluid helium nanodroplets.
    Falconer TM; Lewis WK; Bemish RJ; Miller RE; Glish GL
    Rev Sci Instrum; 2010 May; 81(5):054101. PubMed ID: 20515155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron impact ionization of haloalkanes in helium nanodroplets.
    Yang S; Brereton SM; Wheeler MD; Ellis AM
    J Phys Chem A; 2006 Feb; 110(5):1791-7. PubMed ID: 16451009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron impact ionization of water-doped superfluid helium nanodroplets: observation of He(H(2)O)(n)(+) clusters.
    Yang S; Brereton SM; Nandhra S; Ellis AM; Shang B; Yuan LF; Yang J
    J Chem Phys; 2007 Oct; 127(13):134303. PubMed ID: 17919020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoionization of helium nanodroplets doped with rare gas atoms.
    Kim JH; Peterka DS; Wang CC; Neumark DM
    J Chem Phys; 2006 Jun; 124(21):214301. PubMed ID: 16774401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams.
    He Y; Zhang J; Li Y; Freund WM; Kong W
    Rev Sci Instrum; 2015 Aug; 86(8):084102. PubMed ID: 26329210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rovibrational spectra for the HCCCN*HCN and HCN*HCCCN binary complexes in 4He droplets.
    Paesani F; Whaley KB; Douberly GE; Miller RE
    J Phys Chem A; 2007 Aug; 111(31):7516-28. PubMed ID: 17595066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron-induced dissociation of doubly protonated betaine clusters: controlling fragmentation chemistry through electron energy.
    Feketeová L; O'Hair RA
    Rapid Commun Mass Spectrom; 2009 Oct; 23(20):3259-63. PubMed ID: 19764074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkali-helium snowball complexes formed on helium nanodroplets.
    Müller S; Mudrich M; Stienkemeier F
    J Chem Phys; 2009 Jul; 131(4):044319. PubMed ID: 19655879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing charge-transfer processes in helium nanodroplets by optically selected mass spectrometry (OSMS): charge steering by long-range interactions.
    Lewis WK; Lindsay CM; Bemish RJ; Miller RE
    J Am Chem Soc; 2005 May; 127(19):7235-42. PubMed ID: 15884965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative ion mass spectrometry of phenothiazines.
    Ryhage R; Brandenberger H
    Biomed Mass Spectrom; 1978 Nov; 5(11):615-20. PubMed ID: 749956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectron studies of neutral Ag3 in helium droplets.
    Przystawik A; Radcliffe P; Diederich T; Döppner T; Tiggesbäumker J; Meiwes-Broer KH
    J Chem Phys; 2007 May; 126(18):184306. PubMed ID: 17508802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge reduction of oligonucleotide anions via gas-phase electron transfer to xenon cations.
    Stephenson JL; McLuckey SA
    Rapid Commun Mass Spectrom; 1997; 11(8):875-80. PubMed ID: 9183856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cleavage of the ether bond by electron impact: differences between linear ethers and tetrahydrofuran.
    Ibănescu BC; May O; Allan M
    Phys Chem Chem Phys; 2008 Mar; 10(11):1507-11. PubMed ID: 18327306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoionization dynamics in pure helium droplets.
    Peterka DS; Kim JH; Wang CC; Poisson L; Neumark DM
    J Phys Chem A; 2007 Aug; 111(31):7449-59. PubMed ID: 17571863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion induced snowballs as a diagnostic tool to investigate the caging of metal clusters in large helium droplets.
    Döppner T; Diederich T; Göde S; Przystawik A; Tiggesbäumker J; Meiwes-Broer KH
    J Chem Phys; 2007 Jun; 126(24):244513. PubMed ID: 17614570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bond dissociation of the dipeptide dialanine and its derivative alanine anhydride induced by low energy electrons.
    Alizadeh E; Gschliesser D; Bartl P; Hager M; Edtbauer A; Vizcaino V; Mauracher A; Probst M; Märk TD; Ptasińska S; Mason NJ; Denifl S; Scheier P
    J Chem Phys; 2011 Feb; 134(5):054305. PubMed ID: 21303118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of even-numbered hydrogen cluster cations in ultracold helium droplets.
    Jaksch S; Mauracher A; Bacher A; Denifl S; da Silva FF; Schöbel H; Echt O; Märk TD; Probst M; Bohme DK; Scheier P
    J Chem Phys; 2008 Dec; 129(22):224306. PubMed ID: 19071915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-low-temperature reactions of Mg atoms with O2 molecules in helium droplets.
    Krasnokutski SA; Huisken F
    J Phys Chem A; 2010 Jul; 114(27):7292-300. PubMed ID: 20560588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Argon clusters embedded in helium nanodroplets.
    da Silva FF; Bartl P; Denifl S; Echt O; Märk TD; Scheier P
    Phys Chem Chem Phys; 2009 Nov; 11(42):9791-7. PubMed ID: 19851558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.