BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18335996)

  • 1. Trapping a folding intermediate of the alpha-helix: stabilization of the pi-helix.
    Chapman R; Kulp JL; Patgiri A; Kallenbach NR; Bracken C; Arora PS
    Biochemistry; 2008 Apr; 47(14):4189-95. PubMed ID: 18335996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation.
    Patgiri A; Jochim AL; Arora PS
    Acc Chem Res; 2008 Oct; 41(10):1289-300. PubMed ID: 18630933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of side chains in helix nucleation differ from helix propagation.
    Miller SE; Watkins AM; Kallenbach NR; Arora PS
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6636-41. PubMed ID: 24753597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of helix-coil transition of block copolypeptide, Glu12-Ala12, by combined use of CD and NMR spectroscopy.
    Yamazaki T; Furuya H; Watanabe T; Miyachi S; Nishiuchi Y; Nishio H; Abe A
    Biopolymers; 2005; 80(2-3):225-32. PubMed ID: 15815984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of a helical peptide unfolding pathway.
    Diana D; Ziaco B; Scarabelli G; Pedone C; Colombo G; D'Andrea LD; Fattorusso R
    Chemistry; 2010 May; 16(18):5400-7. PubMed ID: 20358558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies and rationales for the de novo design of a helical hairpin peptide.
    Fezoui Y; Weaver DL; Osterhout JJ
    Protein Sci; 1995 Feb; 4(2):286-95. PubMed ID: 7757017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations.
    Andersen NH; Tong H
    Protein Sci; 1997 Sep; 6(9):1920-36. PubMed ID: 9300492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin.
    Waltho JP; Feher VA; Merutka G; Dyson HJ; Wright PE
    Biochemistry; 1993 Jun; 32(25):6337-47. PubMed ID: 8518279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal.
    Shin HC; Merutka G; Waltho JP; Wright PE; Dyson HJ
    Biochemistry; 1993 Jun; 32(25):6348-55. PubMed ID: 8518280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of an alpha-helix peptide into a beta-hairpin induced by addition of a fragment results in creation of a coexisting state.
    Araki M; Tamura A
    Proteins; 2007 Mar; 66(4):860-8. PubMed ID: 17177204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides.
    Muñoz V; Serrano L
    J Mol Biol; 1995 Jan; 245(3):275-96. PubMed ID: 7844817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of initial steps of helix propagation in model peptides.
    Goch G; Maciejczyk M; Oleszczuk M; Stachowiak D; Malicka J; Bierzyński A
    Biochemistry; 2003 Jun; 42(22):6840-7. PubMed ID: 12779338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously.
    Pantoja-Uceda D; Pastor MT; Salgado J; Pineda-Lucena A; Pérez-Payá E
    J Pept Sci; 2008 Jul; 14(7):845-54. PubMed ID: 18247449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Helix Handedness of ααβ-Peptide Foldamers through Sequence Shifting.
    Szefczyk M; Węglarz-Tomczak E; Fortuna P; Krzysztoń A; Rudzińska-Szostak E; Berlicki Ł
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):2087-2091. PubMed ID: 28079284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminating the helical forms of peptides by NMR and molecular dynamics simulation.
    Freedberg DI; Venable RM; Rossi A; Bull TE; Pastor RW
    J Am Chem Soc; 2004 Aug; 126(33):10478-84. PubMed ID: 15315464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies.
    Greenfield NJ; Montelione GT; Farid RS; Hitchcock-DeGregori SE
    Biochemistry; 1998 May; 37(21):7834-43. PubMed ID: 9601044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin.
    Shin HC; Merutka G; Waltho JP; Tennant LL; Dyson HJ; Wright PE
    Biochemistry; 1993 Jun; 32(25):6356-64. PubMed ID: 8518281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-helix nucleation by a calcium-binding peptide loop.
    Siedlecka M; Goch G; Ejchart A; Sticht H; Bierzynski A
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):903-8. PubMed ID: 9927666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of alpha-, 3(10)-, and pi-helix in helix-->coil transitions.
    Armen R; Alonso DO; Daggett V
    Protein Sci; 2003 Jun; 12(6):1145-57. PubMed ID: 12761385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix formation in preorganized beta/gamma-peptide foldamers: hydrogen-bond analogy to the alpha-helix without alpha-amino acid residues.
    Guo L; Almeida AM; Zhang W; Reidenbach AG; Choi SH; Guzei IA; Gellman SH
    J Am Chem Soc; 2010 Jun; 132(23):7868-9. PubMed ID: 20491510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.