These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 18336012)

  • 41. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles.
    Meerabai Devi L; Negi DP
    Nanotechnology; 2011 Jun; 22(24):245502. PubMed ID: 21508450
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TNT detection using multiplexed liquid array displacement immunoassays.
    Anderson GP; Moreira SC; Charles PT; Medintz IL; Goldman ER; Zeinali M; Taitt CR
    Anal Chem; 2006 Apr; 78(7):2279-85. PubMed ID: 16579609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CTAB-capped Mn-doped ZnS quantum dots and label-free aptamer for room-temperature phosphorescence detection of mercury ions.
    Xie WY; Huang WT; Luo HQ; Li NB
    Analyst; 2012 Oct; 137(20):4651-3. PubMed ID: 22919701
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.
    Cizek K; Prior C; Thammakhet C; Galik M; Linker K; Tsui R; Cagan A; Wake J; La Belle J; Wang J
    Anal Chim Acta; 2010 Feb; 661(1):117-21. PubMed ID: 20113724
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation and characterization of ZnS nanoparticles deposited on montmorillonite.
    Kozák O; Praus P; Kočí K; Klementová M
    J Colloid Interface Sci; 2010 Dec; 352(2):244-51. PubMed ID: 20887999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular imprinting at walls of silica nanotubes for TNT recognition.
    Xie C; Liu B; Wang Z; Gao D; Guan G; Zhang Z
    Anal Chem; 2008 Jan; 80(2):437-43. PubMed ID: 18088103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast and effective catalytic degradation of an organic dye by eco-friendly capped ZnS and Mn-doped ZnS nanocrystals.
    Ouni S; Mohamed NBH; Chaaben N; Bonilla-Petriciolet A; Haouari M
    Environ Sci Pollut Res Int; 2022 May; 29(22):33474-33494. PubMed ID: 35028833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film.
    Zhou X; Liu H; Yang L; Liu J
    Analyst; 2013 Mar; 138(6):1858-64. PubMed ID: 23377277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ZnS nanocrystals and nanoflowers synthesized by a green chemistry approach: rare excitonic photoluminescence achieved by the tunable molar ratio of precursors.
    Xiao N; Dai Q; Wang Y; Ning J; Liu B; Zou G; Zou B
    J Hazard Mater; 2012 Apr; 211-212():62-7. PubMed ID: 22138176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Syntheses and spectral studies of functionalized ZnS nanoparticles as fluorescence probes].
    Wang LY; Zhao CQ; Zhu CQ; Wang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):98-101. PubMed ID: 15768988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Attogram sensing of trinitrotoluene with a self-assembled molecular gelator.
    Kartha KK; Babu SS; Srinivasan S; Ajayaghosh A
    J Am Chem Soc; 2012 Mar; 134(10):4834-41. PubMed ID: 22352376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conjugated polymer-titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors.
    Deng C; He Q; He C; Shi L; Cheng J; Lin T
    J Phys Chem B; 2010 Apr; 114(13):4725-30. PubMed ID: 20222703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT.
    Fan L; Hu Y; Wang X; Zhang L; Li F; Han D; Li Z; Zhang Q; Wang Z; Niu L
    Talanta; 2012 Nov; 101():192-7. PubMed ID: 23158311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl.
    Ular N; Üzer A; Durmazel S; Erçağ E; Apak R
    ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Size-dependent optical properties of bio-compatible ZnS:Mn nanocrystals and their application in the immobilisation of trypsin.
    Sajimol Augustine M; Manzur Ali PP; Sapna K; Elyas KK; Jayalekshmi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():223-8. PubMed ID: 23474481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism.
    Şen FB; Bener M; Apak R
    J Fluoresc; 2021 Jul; 31(4):989-997. PubMed ID: 33880706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA.
    He Y; Wang HF; Yan XP
    Chemistry; 2009; 15(22):5436-40. PubMed ID: 19388044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles.
    Zou WS; Wang YQ; Wang F; Shao Q; Zhang J; Liu J
    Anal Bioanal Chem; 2013 May; 405(14):4905-12. PubMed ID: 23503748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective visual detection of trace trinitrotoluene residues based on dual-color fluorescence of graphene oxide-nanocrystals hybrid probe.
    Zhang K; Yang L; Zhu H; Ma F; Zhang Z; Wang S
    Analyst; 2014 May; 139(10):2379-85. PubMed ID: 24667778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots.
    Carrillo-Carrión C; Simonet BM; Valcárcel M
    Anal Chim Acta; 2013 Aug; 792():93-100. PubMed ID: 23910973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.