These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 18336832)
21. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae. Prabhakar A; Bishop AH J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351 [TBL] [Abstract][Full Text] [Related]
22. Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis. Porcar M; Navarro L; Jiménez-Peydró R J Invertebr Pathol; 2006 Sep; 93(1):63-6. PubMed ID: 16777139 [TBL] [Abstract][Full Text] [Related]
23. Isolation of Bacillus thuringiensis for microbiological control of insects. Ali SA; Attia RM Zentralbl Bakteriol Naturwiss; 1978; 133(3):232-4. PubMed ID: 696044 [TBL] [Abstract][Full Text] [Related]
24. A gene encoding alanine racemase is involved in spore germination in Bacillus thuringiensis. Yan X; Gai Y; Liang L; Liu G; Tan H Arch Microbiol; 2007 May; 187(5):371-8. PubMed ID: 17165028 [TBL] [Abstract][Full Text] [Related]
25. Activation and germination of spores of Bacillus thuringiensis var israelensis by alkaline pH and larval (Aedes aegypti) gut fluid. Bhattacharya PR Southeast Asian J Trop Med Public Health; 1999 Jun; 30(2):338-42. PubMed ID: 10774706 [TBL] [Abstract][Full Text] [Related]
26. Larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), to Bacillus thuringiensis H serovars isolated in Japan. Higuchi K; Saitoh H; Mizuki E; Ichimatsu T; Ohba M Microbiol Res; 2000 Apr; 155(1):23-9. PubMed ID: 10830896 [TBL] [Abstract][Full Text] [Related]
27. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea. Lee DH; Cha IH; Woo DS; Ohba M Can J Microbiol; 2003 Jul; 49(7):465-71. PubMed ID: 14569287 [TBL] [Abstract][Full Text] [Related]
28. Transfer of plasmid pBC16 between Bacillus thuringiensis strains in non-susceptible larvae. Thomas DJ; Morgan JA; Whipps JM; Saunders JR FEMS Microbiol Ecol; 2002 Jun; 40(3):181-90. PubMed ID: 19709226 [TBL] [Abstract][Full Text] [Related]
29. Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris). Mommaerts V; Jans K; Smagghe G Pest Manag Sci; 2010 May; 66(5):520-5. PubMed ID: 20024947 [TBL] [Abstract][Full Text] [Related]
30. Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats. Wilcks A; Hansen BM; Hendriksen NB; Licht TR FEMS Immunol Med Microbiol; 2006 Dec; 48(3):410-8. PubMed ID: 17087815 [TBL] [Abstract][Full Text] [Related]
31. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination. Milutinović B; Höfling C; Futo M; Scharsack JP; Kurtz J Appl Environ Microbiol; 2015 Dec; 81(23):8135-44. PubMed ID: 26386058 [TBL] [Abstract][Full Text] [Related]
32. Entomopathogenic spore-formers from soil samples of mosquito habitats in northern Nigeria. Weiser J; Prasertphon S Zentralbl Mikrobiol; 1984; 139(1):49-55. PubMed ID: 6426190 [TBL] [Abstract][Full Text] [Related]
33. Interaction between the predator Podisus nigrispinus (Hemiptera: Pentatomidae) and the entomopathogenic bacteria Bacillus thuringiensis. Carvalho VF; Vacari AM; Pomari AF; De Bortoli CP; Ramalho DG; De Bortoli SA Environ Entomol; 2012 Dec; 41(6):1454-61. PubMed ID: 23321092 [TBL] [Abstract][Full Text] [Related]
34. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella). Yi X; Ehlers RU Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):633-6. PubMed ID: 17390802 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Feb; 71(2):216-24. PubMed ID: 24668916 [TBL] [Abstract][Full Text] [Related]
36. The impact of strain diversity and mixed infections on the evolution of resistance to Bacillus thuringiensis. Raymond B; Wright DJ; Crickmore N; Bonsall MB Proc Biol Sci; 2013 Oct; 280(1769):20131497. PubMed ID: 24004937 [TBL] [Abstract][Full Text] [Related]
37. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Janmaat AF; Myers J Proc Biol Sci; 2003 Nov; 270(1530):2263-70. PubMed ID: 14613613 [TBL] [Abstract][Full Text] [Related]
38. The Combination of Jiang YX; Chen JZ; Li MW; Zha BH; Huang PR; Chu XM; Chen J; Yang G Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008871 [TBL] [Abstract][Full Text] [Related]
39. Effect of low levels of Bacillus thuringiensis exposure on the growth, food consumption and digestion efficiencies of Trichoplusia ni resistant and susceptible to Bt. Janmaat AF; Bergmann L; Ericsson J J Invertebr Pathol; 2014 Jun; 119():32-9. PubMed ID: 24727193 [TBL] [Abstract][Full Text] [Related]
40. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. Hendriksen NB; Hansen BM FEMS Microbiol Lett; 2006 Apr; 257(1):106-11. PubMed ID: 16553839 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]