These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 18336832)
61. Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella). Liu YB; Tabashnik BE; Moar WJ; Smith RA Appl Environ Microbiol; 1998 Apr; 64(4):1385-9. PubMed ID: 16349543 [TBL] [Abstract][Full Text] [Related]
62. Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts. Maduell P; Armengol G; Llagostera M; Lindow S; Orduz S J Appl Microbiol; 2007 Dec; 103(6):2593-600. PubMed ID: 18045443 [TBL] [Abstract][Full Text] [Related]
63. A preliminary study of the bioactivity of vegetative proteins extracted from Malaysian Bacillus thuringiensis isolates. Ramasamy B; Nadarajah VD; Soong ZK; Lee HL; Mohammad SM Trop Biomed; 2008 Apr; 25(1):64-74. PubMed ID: 18600206 [TBL] [Abstract][Full Text] [Related]
64. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
65. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. Grizanova EV; Dubovskiy IM; Whitten MM; Glupov VV J Invertebr Pathol; 2014 Jun; 119():40-6. PubMed ID: 24735783 [TBL] [Abstract][Full Text] [Related]
66. Effect of temperature and relative humidity on the cellular defense response of Ephestia kuehniella larvae fed Bacillus thuringiensis. Mostafa AM; Fields PG; Holliday NJ J Invertebr Pathol; 2005 Oct; 90(2):79-84. PubMed ID: 16236308 [TBL] [Abstract][Full Text] [Related]
67. Production of concentrates of bacterial bio-insecticide Bacillus thuringiensis var. israelensis by flocculation/sedimentation. Luna-Finkler CL; Finkler L Acta Trop; 2008 Aug; 107(2):134-8. PubMed ID: 18582843 [TBL] [Abstract][Full Text] [Related]
68. Identification of vip3A-type genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene. Liu J; Song F; Zhang J; Liu R; He K; Tan J; Huang D Lett Appl Microbiol; 2007 Oct; 45(4):432-8. PubMed ID: 17868317 [TBL] [Abstract][Full Text] [Related]
70. Insect resistance to Bacillus thuringiensis: alterations in the indianmeal moth larval gut proteome. Candas M; Loseva O; Oppert B; Kosaraju P; Bulla LA Mol Cell Proteomics; 2003 Jan; 2(1):19-28. PubMed ID: 12601079 [TBL] [Abstract][Full Text] [Related]
71. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). Milne R; Liu Y; Gauthier D; van Frankenhuyzen K J Invertebr Pathol; 2008 Oct; 99(2):166-72. PubMed ID: 18585733 [TBL] [Abstract][Full Text] [Related]
73. Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. El-Aziz NM; Awad HH Micron; 2010 Apr; 41(3):203-9. PubMed ID: 20056427 [TBL] [Abstract][Full Text] [Related]
74. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. Alippi AM; Reynaldi FJ J Invertebr Pathol; 2006 Mar; 91(3):141-6. PubMed ID: 16458322 [TBL] [Abstract][Full Text] [Related]
75. Sterilization of Bacillus thuringiensis israelensis products by gamma radiation. Becker N J Am Mosq Control Assoc; 2002 Mar; 18(1):57-62. PubMed ID: 11998932 [TBL] [Abstract][Full Text] [Related]
76. Isolation and characterization of Pseudomonas cedrina infecting Plutella xylostella (Lepidoptera: Plutellidae). Liu FH; Lin XL; Kang ZW; Tian HG; Liu TX Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21593. PubMed ID: 31612553 [TBL] [Abstract][Full Text] [Related]
77. Application of different downstream processing methods and their comparison for the large-scale preparation of Bacillus thuringiensis var. israelensis after fermentation for mosquito control. Prabakaran G; Hoti SL Biologicals; 2008 Nov; 36(6):412-5. PubMed ID: 18657445 [TBL] [Abstract][Full Text] [Related]
78. [Natural strains of Bacillus thuringiensis Berliner pathogenic for blood-sucking mosquitoes]. Sokolova EI; Makarova GIa; Kulieva NM; Pavlova-Ivanova LK; Ul'ianova EA Med Parazitol (Mosk); 1985; (3):35-41. PubMed ID: 2863743 [No Abstract] [Full Text] [Related]
79. Moderation of pathogen-induced mortality: the role of density in Bacillus thuringiensis virulence. Raymond B; Ellis RJ; Bonsall MB Biol Lett; 2009 Apr; 5(2):218-20. PubMed ID: 19033132 [TBL] [Abstract][Full Text] [Related]
80. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis. Xu XX; Zhang YQ; Freed S; Yu J; Gao YF; Wang S; Ouyang LN; Ju WY; Jin FL Bull Entomol Res; 2016 Dec; 106(6):790-800. PubMed ID: 27443911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]