These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 18336832)
81. Virulent and necrotrophic strategies of Bacillus thuringiensis in susceptible and resistant insects, Galleria mellonella. Grizanova EV; Krytsyna TI; Kalmykova GV; Sokolova E; Alikina T; Kabilov M; Coates CJ; Dubovskiy IM Microb Pathog; 2023 Feb; 175():105958. PubMed ID: 36572197 [TBL] [Abstract][Full Text] [Related]
82. The Change in the Entomopathogenic Properties in Streptomycin Resistant Bacillus thuringiensis. Polenogova OV; Glupov VV Dokl Biol Sci; 2018 Nov; 483(1):243-245. PubMed ID: 30603948 [TBL] [Abstract][Full Text] [Related]
83. Pathogenicity of Paecilomyces fumosoroseus isolates to diamondback moth, Plutella xylostella: correlation with spore size, germination speed, and attachment to cuticle. Altre JA; Vandenberg JD; Cantone FA J Invertebr Pathol; 1999 May; 73(3):332-8. PubMed ID: 10222189 [TBL] [Abstract][Full Text] [Related]
84. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella. Gulzar A; Wright DJ Ecotoxicology; 2015 Nov; 24(9):1815-22. PubMed ID: 26162322 [TBL] [Abstract][Full Text] [Related]
85. Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Jarrett P; Stephenson M Appl Environ Microbiol; 1990 Jun; 56(6):1608-14. PubMed ID: 2383006 [TBL] [Abstract][Full Text] [Related]
86. Laboratory and field tests of spray-dried and granular formulations of a Bacillus thuringiensis strain with insecticidal activity against the sugarcane borer. Rosas-García NM Pest Manag Sci; 2006 Sep; 62(9):855-61. PubMed ID: 16786544 [TBL] [Abstract][Full Text] [Related]
87. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Raddadi N; Belaouis A; Tamagnini I; Hansen BM; Hendriksen NB; Boudabous A; Cherif A; Daffonchio D J Basic Microbiol; 2009 Jun; 49(3):293-303. PubMed ID: 19025870 [TBL] [Abstract][Full Text] [Related]
88. A Qin J; Tong Z; Zhan Y; Buisson C; Song F; He K; Nielsen-LeRoux C; Guo S Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32294913 [No Abstract] [Full Text] [Related]
89. Development of a self floating slow release formulation of Bacillus thuringiensis var. israelensis and its larvicidal activity. Prabakaran G; Padmanabhan V; Balaraman K Indian J Exp Biol; 2001 Jan; 39(1):82-4. PubMed ID: 11349533 [TBL] [Abstract][Full Text] [Related]
90. Toward the physiological basis for increased Agrotis ipsilon multiple nucleopolyhedrovirus infection following feeding of Agrotis ipsilon larvae on transgenic corn expressing Cry1Fa2. Schmidt NR; Haywood JM; Bonning BC J Invertebr Pathol; 2009 Oct; 102(2):141-8. PubMed ID: 19651136 [TBL] [Abstract][Full Text] [Related]
91. [Interrelationship between the intestinal microflora of lackey moth, brown-tail moth and the entomopathogenic bacterium Bacillus thuringiensis]. Rizvanov K Mikrobiologiia; 1975; 44(6):1074-80. PubMed ID: 2842 [TBL] [Abstract][Full Text] [Related]
92. Retention of mosquito larvicidal activity of lyophilized cells and WDP formulation of Bacillus thuringiensis var. israelensis on long-term storage. Manonmani AM; Prabakaran G; Hoti SL Acta Trop; 2008 Feb; 105(2):170-5. PubMed ID: 18155180 [TBL] [Abstract][Full Text] [Related]
94. Interaction of Bacillus thuringiensis and nuclear polyhedrosis virus in Spodoptera exigua. Lipa JJ; Slizynski K; Ziemnicka J; Bartkowski J Environ Qual Saf Suppl; 1975; 3():668-71. PubMed ID: 773648 [No Abstract] [Full Text] [Related]
95. Cross-utilization and expression of outer membrane receptor proteins for siderophore uptake by Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) gut bacteria. Indiragandhi P; Anandham R; Madhaiyan M; Kim GH; Sa T FEMS Microbiol Lett; 2008 Dec; 289(1):27-33. PubMed ID: 19054090 [TBL] [Abstract][Full Text] [Related]
96. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Rahman MM; Roberts HL; Sarjan M; Asgari S; Schmidt O Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2696-9. PubMed ID: 14978282 [TBL] [Abstract][Full Text] [Related]
97. Immobilization in alginate as a technique for the preservation of Bacillus thuringiensis var. israelensis for long-term preservation. Prabakaran G; Hoti SL J Microbiol Methods; 2008 Jan; 72(1):91-4. PubMed ID: 18054810 [TBL] [Abstract][Full Text] [Related]
98. Competition between isolates of Zoophthora radicans co-infecting Plutella xylostella populations. Morales-Vidal S; Alatorre-Rosas R; Clark SJ; Pell JK; Guzmán-Franco AW J Invertebr Pathol; 2013 Jun; 113(2):137-45. PubMed ID: 23517676 [TBL] [Abstract][Full Text] [Related]
99. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Ramarao N; Lereclus D Cell Microbiol; 2005 Sep; 7(9):1357-64. PubMed ID: 16098222 [TBL] [Abstract][Full Text] [Related]
100. The red flour beetle as a model for bacterial oral infections. Milutinović B; Stolpe C; Peuβ R; Armitage SA; Kurtz J PLoS One; 2013; 8(5):e64638. PubMed ID: 23737991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]