These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18336858)

  • 1. A new approximate solution for chlorine concentration decay in pipes.
    Yeh HD; Wen SB; Chang YC; Lu CS
    Water Res; 2008 May; 42(10-11):2787-95. PubMed ID: 18336858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.
    Al-Jasser AO
    Water Res; 2007 Jan; 41(2):387-96. PubMed ID: 17140619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of advanced treatment on chlorine decay in metallic pipes.
    Rossman LA
    Water Res; 2006 Jul; 40(13):2493-502. PubMed ID: 16806395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of residual chlorine in water distribution system.
    Li X; Gu DM; Qi JY; M U; Zhao HB
    J Environ Sci (China); 2003 Jan; 15(1):136-44. PubMed ID: 12602618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water quality parameter estimation in a distribution system under dynamic state.
    Munavalli GR; Mohan Kumar MS
    Water Res; 2005 Nov; 39(18):4287-98. PubMed ID: 16216296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection.
    Jeffrey Yang Y; Goodrich JA; Clark RM; Li SY
    Water Res; 2008 Mar; 42(6-7):1397-412. PubMed ID: 17991507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorine decay studies in water supply system.
    Munavalli GR; Kulkarni MA
    J Environ Sci Eng; 2009 Jan; 51(1):53-8. PubMed ID: 21114154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The decay of chlorine associated with the pipe wall in water distribution systems.
    Hallam NB; West JR; Forster CF; Powell JC; Spencer I
    Water Res; 2002 Aug; 36(14):3479-88. PubMed ID: 12230193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2017 Nov; 125():427-437. PubMed ID: 28892770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2012 Jun; 46(10):3293-303. PubMed ID: 22560619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for calculation of the chlorine demand of natural and treated waters.
    Warton B; Heitz A; Joll C; Kagi R
    Water Res; 2006 Aug; 40(15):2877-84. PubMed ID: 16831456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic simulation of multicomponent reaction transport in water distribution systems.
    Munavalli GR; Mohan Kumar MS
    Water Res; 2004 Apr; 38(8):1971-88. PubMed ID: 15087178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reply to comment on "Using Bayesian statistics to estimate the coefficients of a two-component second-order chlorine bulk decay model for a water distribution system" by Huang, J.J., McBean E.A. Water Res. (2007).
    Shen H; Huang JJ; McBean E
    Water Res; 2011 Mar; 45(6):2355-7. PubMed ID: 21315403
    [No Abstract]   [Full Text] [Related]  

  • 15. Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater.
    Guyonnet D; Neville C
    J Contam Hydrol; 2004 Nov; 75(1-2):141-53. PubMed ID: 15385102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of suitable chlorine bulk-decay models for water distribution systems.
    Fisher I; Kastl G; Sathasivan A
    Water Res; 2011 Oct; 45(16):4896-908. PubMed ID: 21782207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Bayesian statistics to estimate the coefficients of a two- component second-order chlorine bulk decay model for a water distribution system.
    Huang JJ; McBean EA
    Water Res; 2007 Jan; 41(2):287-94. PubMed ID: 17169396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water quality modeling in the dead end sections of drinking water distribution networks.
    Abokifa AA; Yang YJ; Lo CS; Biswas P
    Water Res; 2016 Feb; 89():107-17. PubMed ID: 26641015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time detection and identification of aqueous chlorine transformation products using QTOF MS.
    Vanderford BJ; Mawhinney DB; Rosario-Ortiz FL; Snyder SA
    Anal Chem; 2008 Jun; 80(11):4193-9. PubMed ID: 18465880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of flow and water chemistry on lead release rates from pipe scales.
    Xie Y; Giammar DE
    Water Res; 2011 Dec; 45(19):6525-34. PubMed ID: 22018527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.