These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18337135)

  • 1. Application of the independent molecule model to elucidate the dynamics of structure I methane hydrate: a second report.
    Yoshioki S
    J Mol Graph Model; 2008 Jun; 26(8):1353-64. PubMed ID: 18337135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the independent molecule model to elucidate the dynamics of structure I methane hydrate.
    Yoshioki S
    J Mol Graph Model; 2007 Mar; 25(6):856-69. PubMed ID: 17030134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectra of gas hydrates--differences and analogies to ice 1h and (gas saturated) water.
    Schicks JM; Erzinger J; Ziemann MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2399-403. PubMed ID: 16029863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of methane hydrate formation at a water/methane interface.
    Zhang J; Hawtin RW; Yang Y; Nakagava E; Rivero M; Choi SK; Rodger PM
    J Phys Chem B; 2008 Aug; 112(34):10608-18. PubMed ID: 18671369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular potential energies in dodecahedron cell of methane hydrate and dispersion correction for DFT.
    Du QS; Li DP; Liu PJ; Huang RB
    J Mol Graph Model; 2008 Sep; 27(2):140-6. PubMed ID: 18485767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.
    Susilo R; Alavi S; Ripmeester JA; Englezos P
    J Chem Phys; 2008 May; 128(19):194505. PubMed ID: 18500878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the water/methane interface on methane hydrate cages: the potential of mean force and cage lifetimes.
    Mastny EA; Miller CA; de Pablo JJ
    J Chem Phys; 2008 Jul; 129(3):034701. PubMed ID: 18647032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of experimental and density functional study on the molecular structure, infrared and Raman spectra and vibrational assignments of 6-chloronicotinic acid.
    Karabacak M; Kurt M
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):876-83. PubMed ID: 18358772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions.
    Lu WJ; Chou IM; Burruss RC; Yang MZ
    Appl Spectrosc; 2006 Feb; 60(2):122-9. PubMed ID: 16542563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms.
    Guo GJ; Zhang YG; Li M; Wu CH
    J Chem Phys; 2008 May; 128(19):194504. PubMed ID: 18500877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face.
    Vatamanu J; Kusalik PG
    J Phys Chem B; 2008 Feb; 112(8):2399-404. PubMed ID: 18247598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One and two hydrogen molecules in the large cage of the structure II clathrate hydrate: quantum translation-rotation dynamics close to the cage wall.
    Sebastianelli F; Xu M; Kanan DK; Bacić Z
    J Phys Chem A; 2007 Jul; 111(28):6115-21. PubMed ID: 17583332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the independent molecule model to the calculation of free energy and rigid-body motions of water hexamers.
    Yoshioki S
    J Mol Graph Model; 2003 Jun; 21(6):487-98. PubMed ID: 12676236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the independent molecule model to the calculation of free energy and rigid-body motions of water heptamers and octamers.
    Yoshioki S
    J Mol Graph Model; 2004 Oct; 23(2):111-27. PubMed ID: 15363454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic state of small and large cavities for methane hydrate.
    Ida T; Mizuno M; Endo K
    J Comput Chem; 2002 Aug; 23(11):1071-5. PubMed ID: 12116393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic interactions between methane and a nanoscopic pocket: three dimensional distribution of potential of mean force revealed by computer simulations.
    Setny P
    J Chem Phys; 2008 Mar; 128(12):125105. PubMed ID: 18376980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum molecular dynamics study of water on TiO2(110) surface.
    Zhang W; Yang J; Luo Y; Monti S; Carravetta V
    J Chem Phys; 2008 Aug; 129(6):064703. PubMed ID: 18715098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of gas hydrate formation.
    Moon C; Taylor PC; Rodger PM
    J Am Chem Soc; 2003 Apr; 125(16):4706-7. PubMed ID: 12696878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.
    Buchanan P; Soper AK; Thompson H; Westacott RE; Creek JL; Hobson G; Koh CA
    J Chem Phys; 2005 Oct; 123(16):164507. PubMed ID: 16268712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of being exhaustive. Optimization of bridging structural water molecules and water networks in models of biological systems.
    Kellogg GE; Chen DL
    Chem Biodivers; 2004 Jan; 1(1):98-105. PubMed ID: 17191777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.