BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 18337252)

  • 41. Single strand DNA binding and annealing activities in the yeast recombination factor Rad59.
    Petukhova G; Stratton SA; Sung P
    J Biol Chem; 1999 Nov; 274(48):33839-42. PubMed ID: 10567339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochemical characterization of the RNA-binding and RNA-DNA strand exchange activities of the human RAD52 protein.
    Tsuchiya R; Saotome M; Kinoshita C; Kamoi K; Kagawa W
    J Biochem; 2023 Jun; 174(1):59-69. PubMed ID: 36811351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heteroduplex joint formation by a stoichiometric complex of Rad51 and Rad52 of Saccharomyces cerevisiae.
    Arai N; Ito D; Inoue T; Shibata T; Takahashi H
    J Biol Chem; 2005 Sep; 280(37):32218-29. PubMed ID: 16033757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The budding yeast Mei5-Sae3 complex interacts with Rad51 and preferentially binds a DNA fork structure.
    Say AF; Ledford LL; Sharma D; Singh AK; Leung WK; Sehorn HA; Tsubouchi H; Sung P; Sehorn MG
    DNA Repair (Amst); 2011 Jun; 10(6):586-94. PubMed ID: 21543267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break.
    Lee SE; Pellicioli A; Vaze MB; Sugawara N; Malkova A; Foiani M; Haber JE
    Mol Cell Biol; 2003 Dec; 23(23):8913-23. PubMed ID: 14612428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rad52 Oligomeric N-Terminal Domain Stabilizes Rad51 Nucleoprotein Filaments and Contributes to Their Protection against Srs2.
    Ma E; Maloisel L; Le Falher L; Guérois R; Coïc E
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human and yeast Rad52 proteins promote DNA strand exchange.
    Bi B; Rybalchenko N; Golub EI; Radding CM
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9568-72. PubMed ID: 15205482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remodeling of the Rad51 DNA strand-exchange protein by the Srs2 helicase.
    Sasanuma H; Furihata Y; Shinohara M; Shinohara A
    Genetics; 2013 Aug; 194(4):859-72. PubMed ID: 23770697
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.
    Miyazaki T; Bressan DA; Shinohara M; Haber JE; Shinohara A
    EMBO J; 2004 Feb; 23(4):939-49. PubMed ID: 14765116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament.
    Alexeev A; Mazin A; Kowalczykowski SC
    Nat Struct Biol; 2003 Mar; 10(3):182-6. PubMed ID: 12577053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament.
    Solinger JA; Lutz G; Sugiyama T; Kowalczykowski SC; Heyer WD
    J Mol Biol; 2001 Apr; 307(5):1207-21. PubMed ID: 11292336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination.
    Sugawara N; Wang X; Haber JE
    Mol Cell; 2003 Jul; 12(1):209-19. PubMed ID: 12887906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing.
    Paliwal S; Kanagaraj R; Sturzenegger A; Burdova K; Janscak P
    Nucleic Acids Res; 2014 Feb; 42(4):2380-90. PubMed ID: 24319145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Live cell monitoring of double strand breaks in S. cerevisiae.
    Waterman DP; Zhou F; Li K; Lee CS; Tsabar M; Eapen VV; Mazzella A; Haber JE
    PLoS Genet; 2019 Mar; 15(3):e1008001. PubMed ID: 30822309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51.
    Milne GT; Ho T; Weaver DT
    Genetics; 1995 Mar; 139(3):1189-99. PubMed ID: 7768432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.
    Ma W; Westmoreland JW; Gordenin DA; Resnick MA
    PLoS Genet; 2011 Apr; 7(4):e1002059. PubMed ID: 21552545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59.
    Bai Y; Davis AP; Symington LS
    Genetics; 1999 Nov; 153(3):1117-30. PubMed ID: 10545446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction with Rad51 is indispensable for recombination mediator function of Rad52.
    Krejci L; Song B; Bussen W; Rothstein R; Mortensen UH; Sung P
    J Biol Chem; 2002 Oct; 277(42):40132-41. PubMed ID: 12171935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction.
    Bergink S; Ammon T; Kern M; Schermelleh L; Leonhardt H; Jentsch S
    Nat Cell Biol; 2013 May; 15(5):526-32. PubMed ID: 23624404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physical interactions between MCM and Rad51 facilitate replication fork lesion bypass and ssDNA gap filling by non-recombinogenic functions.
    Cabello-Lobato MJ; González-Garrido C; Cano-Linares MI; Wong RP; Yáñez-Vílchez A; Morillo-Huesca M; Roldán-Romero JM; Vicioso M; González-Prieto R; Ulrich HD; Prado F
    Cell Rep; 2021 Jul; 36(4):109440. PubMed ID: 34320356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.