BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1194 related articles for article (PubMed ID: 18337363)

  • 1. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation.
    Giraudin A; Cabirol-Pol MJ; Simmers J; Morin D
    J Neurophysiol; 2008 May; 99(5):2626-40. PubMed ID: 18337363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat.
    Giraudin A; Le Bon-Jégo M; Cabirol MJ; Simmers J; Morin D
    J Neurosci; 2012 Aug; 32(34):11841-53. PubMed ID: 22915125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiration-related control of abdominal motoneurons.
    Iizuka M
    Respir Physiol Neurobiol; 2011 Oct; 179(1):80-8. PubMed ID: 21255690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rostrocaudal distribution of spinal respiratory motor activity in an in vitro neonatal rat preparation.
    Iizuka M
    Neurosci Res; 2004 Nov; 50(3):263-9. PubMed ID: 15488289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity.
    Smith JC; Greer JJ; Liu GS; Feldman JL
    J Neurophysiol; 1990 Oct; 64(4):1149-69. PubMed ID: 2258739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercostal expiratory activity in an in vitro brainstem-spinal cord-rib preparation from the neonatal rat.
    Iizuka M
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):293-302. PubMed ID: 10517820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC; Zaporozhets E; Joundi RA; Schmidt BJ
    J Neurophysiol; 2009 Mar; 101(3):1171-8. PubMed ID: 19118107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of respiration-related neuronal activity in the thoracic spinal cord of the neonatal rat: An optical imaging study.
    Iizuka M; Onimaru H; Izumizaki M
    Neuroscience; 2016 Feb; 315():217-27. PubMed ID: 26704634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending respiratory polysynaptic inputs to cervical and thoracic motoneurons diminish during early postnatal maturation in rat spinal cord.
    Juvin L; Morin D
    Eur J Neurosci; 2005 Feb; 21(3):808-13. PubMed ID: 15733100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercostal and abdominal muscle afferent influence on caudal medullary expiratory neurons that drive abdominal muscles.
    Hernandez YM; Lindsey BG; Shannon R
    Exp Brain Res; 1989; 78(1):219-22. PubMed ID: 2531680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further observations on cardiac modulation of thoracic motoneuron discharges.
    Kirkwood PA; Romaniuk JR; Kowalski KE
    Neurosci Lett; 2019 Feb; 694():57-63. PubMed ID: 30468888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Responses of lumbar flexor motoneurons to stimulation of limb afferents].
    Avelev VD
    Fiziol Zh SSSR Im I M Sechenova; 1976 Dec; 62(12):1824-33. PubMed ID: 1010068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.
    Tazerart S; Viemari JC; Darbon P; Vinay L; Brocard F
    J Neurophysiol; 2007 Aug; 98(2):613-28. PubMed ID: 17567773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs.
    Morin D; Viala D
    J Neurosci; 2002 Jun; 22(11):4756-65. PubMed ID: 12040083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.