BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 18337719)

  • 21. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters.
    Howard EC; Sun S; Biers EJ; Moran MA
    Environ Microbiol; 2008 Sep; 10(9):2397-410. PubMed ID: 18510552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oceanospirillales containing the DMSP lyase DddD are key utilisers of carbon from DMSP in coastal seawater.
    Liu J; Xue CX; Wang J; Crombie AT; Carrión O; Johnston AWB; Murrell JC; Liu J; Zheng Y; Zhang XH; Todd JD
    Microbiome; 2022 Jul; 10(1):110. PubMed ID: 35883169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter.
    Noell SE; Giovannoni SJ
    Environ Microbiol; 2019 Jul; 21(7):2559-2575. PubMed ID: 31090982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Marine bacteria from the Roseobacter clade produce sulfur volatiles via amino acid and dimethylsulfoniopropionate catabolism.
    Brock NL; Menke M; Klapschinski TA; Dickschat JS
    Org Biomol Chem; 2014 Jul; 12(25):4318-23. PubMed ID: 24848489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea.
    Zubkov MV; Fuchs BM; Archer SD; Kiene RP; Amann R; Burkill PH
    Environ Microbiol; 2001 May; 3(5):304-11. PubMed ID: 11422317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The unique metabolism of SAR11 aquatic bacteria.
    Tripp HJ
    J Microbiol; 2013 Apr; 51(2):147-53. PubMed ID: 23625213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean.
    Cui Y; Suzuki S; Omori Y; Wong SK; Ijichi M; Kaneko R; Kameyama S; Tanimoto H; Hamasaki K
    Appl Environ Microbiol; 2015 Jun; 81(12):4184-94. PubMed ID: 25862229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-culture and biogeography of Prochlorococcus and SAR11.
    Becker JW; Hogle SL; Rosendo K; Chisholm SW
    ISME J; 2019 Jun; 13(6):1506-1519. PubMed ID: 30742057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial taxa that limit sulfur flux from the ocean.
    Howard EC; Henriksen JR; Buchan A; Reisch CR; Bürgmann H; Welsh R; Ye W; González JM; Mace K; Joye SB; Kiene RP; Whitman WB; Moran MA
    Science; 2006 Oct; 314(5799):649-52. PubMed ID: 17068264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi.
    Reisch CR; Moran MA; Whitman WB
    J Bacteriol; 2008 Dec; 190(24):8018-24. PubMed ID: 18849431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One carbon metabolism in SAR11 pelagic marine bacteria.
    Sun J; Steindler L; Thrash JC; Halsey KH; Smith DP; Carter AE; Landry ZC; Giovannoni SJ
    PLoS One; 2011; 6(8):e23973. PubMed ID: 21886845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new route for synthesis of dimethylsulphoniopropionate in marine algae.
    Gage DA; Rhodes D; Nolte KD; Hicks WA; Leustek T; Cooper AJ; Hanson AD
    Nature; 1997 Jun; 387(6636):891-4. PubMed ID: 9202120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria.
    Reisch CR; Stoudemayer MJ; Varaljay VA; Amster IJ; Moran MA; Whitman WB
    Nature; 2011 May; 473(7346):208-11. PubMed ID: 21562561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SAR11 Cells Rely on Enzyme Multifunctionality To Metabolize a Range of Polyamine Compounds.
    Noell SE; Barrell GE; Suffridge C; Morré J; Gable KP; Graff JR; VerWey BJ; Hellweger FL; Giovannoni SJ
    mBio; 2021 Aug; 12(4):e0109121. PubMed ID: 34425701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory and functional diversity of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-3 and other proteobacteria.
    Bullock HA; Reisch CR; Burns AS; Moran MA; Whitman WB
    J Bacteriol; 2014 Mar; 196(6):1275-85. PubMed ID: 24443527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dimethylsulfoniopropionate uptake by marine phytoplankton.
    Vila-Costa M; Simó R; Harada H; Gasol JM; Slezak D; Kiene RP
    Science; 2006 Oct; 314(5799):652-4. PubMed ID: 17068265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and Biochemical Insights into Dimethylsulfoniopropionate Cleavage by Cofactor-Bound DddK from the Prolific Marine Bacterium Pelagibacter.
    Schnicker NJ; De Silva SM; Todd JD; Dey M
    Biochemistry; 2017 Jun; 56(23):2873-2885. PubMed ID: 28511016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom.
    González JM; Simó R; Massana R; Covert JS; Casamayor EO; Pedrós-Alió C; Moran MA
    Appl Environ Microbiol; 2000 Oct; 66(10):4237-46. PubMed ID: 11010865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitous occurrence of a dimethylsulfoniopropionate ABC transporter in abundant marine bacteria.
    Li CY; Mausz MA; Murphy A; Zhang N; Chen XL; Wang SY; Gao C; Aguilo-Ferretjans MM; Silvano E; Lidbury IDEA; Fu HH; Todd JD; Chen Y; Zhang YZ
    ISME J; 2023 Apr; 17(4):579-587. PubMed ID: 36707613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen.
    Kettles NL; Kopriva S; Malin G
    PLoS One; 2014; 9(4):e94795. PubMed ID: 24733415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.