BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1224 related articles for article (PubMed ID: 18337721)

  • 1. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin.
    Michishita E; McCord RA; Berber E; Kioi M; Padilla-Nash H; Damian M; Cheung P; Kusumoto R; Kawahara TL; Barrett JC; Chang HY; Bohr VA; Ried T; Gozani O; Chua KF
    Nature; 2008 Mar; 452(7186):492-6. PubMed ID: 18337721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone H4 lysine 16 acetylation regulates cellular lifespan.
    Dang W; Steffen KK; Perry R; Dorsey JA; Johnson FB; Shilatifard A; Kaeberlein M; Kennedy BK; Berger SL
    Nature; 2009 Jun; 459(7248):802-7. PubMed ID: 19516333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT6 is required for maintenance of telomere position effect in human cells.
    Tennen RI; Bua DJ; Wright WE; Chua KF
    Nat Commun; 2011 Aug; 2():433. PubMed ID: 21847107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin regulation and genome maintenance by mammalian SIRT6.
    Tennen RI; Chua KF
    Trends Biochem Sci; 2011 Jan; 36(1):39-46. PubMed ID: 20729089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair.
    McCord RA; Michishita E; Hong T; Berber E; Boxer LD; Kusumoto R; Guan S; Shi X; Gozani O; Burlingame AL; Bohr VA; Chua KF
    Aging (Albany NY); 2009 Jan; 1(1):109-21. PubMed ID: 20157594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT6 Protects Smooth Muscle Cells From Senescence and Reduces Atherosclerosis.
    Grootaert MOJ; Finigan A; Figg NL; Uryga AK; Bennett MR
    Circ Res; 2021 Feb; 128(4):474-491. PubMed ID: 33353368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT6 facilitates directional telomere movement upon oxidative damage.
    Gao Y; Tan J; Jin J; Ma H; Chen X; Leger B; Xu J; Spagnol ST; Dahl KN; Levine AS; Liu Y; Lan L
    Sci Rep; 2018 Mar; 8(1):5407. PubMed ID: 29599436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast.
    Xu F; Zhang Q; Zhang K; Xie W; Grunstein M
    Mol Cell; 2007 Sep; 27(6):890-900. PubMed ID: 17889663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WRN controls formation of extrachromosomal telomeric circles and is required for TRF2DeltaB-mediated telomere shortening.
    Li B; Jog SP; Reddy S; Comai L
    Mol Cell Biol; 2008 Mar; 28(6):1892-904. PubMed ID: 18212065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization.
    Tennen RI; Berber E; Chua KF
    Mech Ageing Dev; 2010 Mar; 131(3):185-92. PubMed ID: 20117128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.
    Kawahara TL; Michishita E; Adler AS; Damian M; Berber E; Lin M; McCord RA; Ongaigui KC; Boxer LD; Chang HY; Chua KF
    Cell; 2009 Jan; 136(1):62-74. PubMed ID: 19135889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA.
    Machwe A; Xiao L; Orren DK
    Oncogene; 2004 Jan; 23(1):149-56. PubMed ID: 14712220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences.
    Damerla RR; Knickelbein KE; Strutt S; Liu FJ; Wang H; Opresko PL
    Cell Cycle; 2012 Aug; 11(16):3036-44. PubMed ID: 22871734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity.
    Crabbe L; Verdun RE; Haggblom CI; Karlseder J
    Science; 2004 Dec; 306(5703):1951-3. PubMed ID: 15591207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation.
    Li K; Casta A; Wang R; Lozada E; Fan W; Kane S; Ge Q; Gu W; Orren D; Luo J
    J Biol Chem; 2008 Mar; 283(12):7590-8. PubMed ID: 18203716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific processing of telomeric 3' overhangs by the Werner syndrome protein exonuclease activity.
    Li B; Reddy S; Comai L
    Aging (Albany NY); 2009 Mar; 1(3):289-302. PubMed ID: 20157518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telomere dysfunction as a cause of genomic instability in Werner syndrome.
    Crabbe L; Jauch A; Naeger CM; Holtgreve-Grez H; Karlseder J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2205-10. PubMed ID: 17284601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telomere ResQue and preservation--roles for the Werner syndrome protein and other RecQ helicases.
    Opresko PL
    Mech Ageing Dev; 2008; 129(1-2):79-90. PubMed ID: 18054793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6.
    Michishita E; McCord RA; Boxer LD; Barber MF; Hong T; Gozani O; Chua KF
    Cell Cycle; 2009 Aug; 8(16):2664-6. PubMed ID: 19625767
    [No Abstract]   [Full Text] [Related]  

  • 20. A role for WRN in telomere-based DNA damage responses.
    Eller MS; Liao X; Liu S; Hanna K; Bäckvall H; Opresko PL; Bohr VA; Gilchrest BA
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15073-8. PubMed ID: 17015833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.