These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Changes in RBC Ca2(+)-ATPase activity and red-cell calcium concentration during dialysis in patients with uremia]. Yang Y Zhonghua Yi Xue Za Zhi; 1990 Jan; 70(1):23-5, 4. PubMed ID: 2157534 [TBL] [Abstract][Full Text] [Related]
3. [Clinical study on the alterations of erythrocyte membrane lipids and Ca2+, Mg2(+)-ATPase activity in hyperthyroid patients]. Li XL; OuYang A Zhonghua Nei Ke Za Zhi; 1991 Jul; 30(7):389-91, 454. PubMed ID: 1836430 [TBL] [Abstract][Full Text] [Related]
4. Erythrocyte (Ca2+ + Mg2+)-ATPase activity and calcium homeostasis in Duchenne muscular dystrophy. Shalev RS; Shalev O; Amir N; Porat S; Fawlewski De Leon G J Neurol Sci; 1984 Mar; 63(3):325-30. PubMed ID: 6144734 [TBL] [Abstract][Full Text] [Related]
5. Ca2+-Mg2+-ATPase activity of human red blood cells in healthy and diabetic volunteers. Schaefer W; Priessen J; Mannhold R; Gries AF Klin Wochenschr; 1987 Jan; 65(1):17-21. PubMed ID: 2951558 [TBL] [Abstract][Full Text] [Related]
6. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. Vrolix M; Raeymaekers L; Wuytack F; Hofmann F; Casteels R Biochem J; 1988 Nov; 255(3):855-63. PubMed ID: 2850801 [TBL] [Abstract][Full Text] [Related]
7. Comparison of erythrocyte membrane Ca2(+)-Mg2(+)-ATPase activity in children with and without family history of essential hypertension. Cheng HY; Liu LS; Zheng DY J Hum Hypertens; 1990 Apr; 4(2):147-8. PubMed ID: 2140135 [TBL] [Abstract][Full Text] [Related]
8. Calcium and sodium transport processes in patients with cystic fibrosis. I. A specific decrease in Mg2+-dependent, Ca2+-adenosine triphosphatase activity in erythrocyte membranes from cystic fibrosis patients. Katz S Pediatr Res; 1978 Nov; 12(11):1033-8. PubMed ID: 214742 [TBL] [Abstract][Full Text] [Related]
9. Investigation of (Ca2+ + Mg2+)-ATPase phosphoprotein formation in erythrocyte membranes of patients with cystic fibrosis. Allen BG; Bridges M; Roufogalis BD; Katz S Cell Calcium; 1986 Jun; 7(3):161-8. PubMed ID: 2941149 [TBL] [Abstract][Full Text] [Related]
10. Phospholipid-protein interactions of the plasma-membrane Ca2+-transporting ATPase. Evidence for a tissue-dependent functional difference. Missiaen L; Raeymaekers L; Wuytack F; Vrolix M; de Smedt H; Casteels R Biochem J; 1989 Nov; 263(3):687-94. PubMed ID: 2532005 [TBL] [Abstract][Full Text] [Related]
11. Epitopes of the human erythrocyte Ca2+-Mg2+ ATPase pump in human osteoblast-like cell plasma membranes. Borke JL; Eriksen EF; Minami J; Keeting P; Mann KG; Penniston JT; Riggs BL; Kumar R J Clin Endocrinol Metab; 1988 Dec; 67(6):1299-304. PubMed ID: 2461388 [TBL] [Abstract][Full Text] [Related]
12. Specific localization of 2',3'-cyclic nucleotide 3'-phosphohydrolase, (Ca2+/Mg2+)-ATPase, and acetylcholinesterase in human erythrocyte membrane. Jones M; Keenan RW Biochim Biophys Acta; 1981 Dec; 678(3):403-7. PubMed ID: 6119115 [TBL] [Abstract][Full Text] [Related]
13. Phosphoinositide-protein interactions of the plasma-membrane Ca2(+)-transport ATPase as revealed by fluorescence energy transfer. Verbist J; Gadella TW; Raeymaekers L; Wuytack F; Wirtz KW; Casteels R Biochim Biophys Acta; 1991 Mar; 1063(1):1-6. PubMed ID: 1849742 [TBL] [Abstract][Full Text] [Related]
14. Purification, characterization, and reconstitution of the Ca2+-transport system (high-affinity Ca2+, Mg2+-ATPase) of the human erythrocyte membrane. Gietzen K; Konrad R; Tejcka M; Fleischer S; Wolf HU Acta Biol Med Ger; 1981; 40(4-5):443-56. PubMed ID: 6118989 [TBL] [Abstract][Full Text] [Related]
15. Ca2+ transport in erythrocytes from patients with Duchenne muscular dystrophy. Pijst HL; Scholte HR J Neurol Sci; 1983; 60(3):411-7. PubMed ID: 6138395 [TBL] [Abstract][Full Text] [Related]
16. Regulation of (Ca2+, Mg2+)-ATPase in human erythrocytes dependent on calcium and calmodulin. Scharff O Acta Biol Med Ger; 1981; 40(4-5):457-63. PubMed ID: 6118990 [TBL] [Abstract][Full Text] [Related]
17. Red blood cell calcium homeostasis in patients with end-stage renal disease. Gafter U; Malachi T; Barak H; Djaldetti M; Levi J J Lab Clin Med; 1989 Sep; 114(3):222-31. PubMed ID: 2527934 [TBL] [Abstract][Full Text] [Related]
18. Two high affinity (Ca2+ + Mg2+)-ATPases of vascular smooth muscle plasma membrane preparation. Their relation to the Ca2(+)-pumping ATPase. Yoshida Y; Sun HT; Imai S Am J Hypertens; 1990 Aug; 3(8 Pt 2):249S-252S. PubMed ID: 2145870 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory antibodies to plasmalemmal Ca2+-transporting ATPases. Their use in subcellular localization of (Ca2+ + Mg2+)-dependent ATPase activity in smooth muscle. Verbist J; Wuytack F; Raeymaekers L; Casteels R Biochem J; 1985 Nov; 231(3):737-42. PubMed ID: 2934057 [TBL] [Abstract][Full Text] [Related]
20. Ca2+-Mg2+-ATPase activity in kidney basolateral membrane in non-insulin-dependent diabetic rats. Effect of insulin. Levy J; Gavin JR; Hammerman MR; Avioli LV Diabetes; 1986 Aug; 35(8):899-905. PubMed ID: 2942433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]