These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18337962)

  • 1. Statistical-uncertainty-based adaptive filtering of lidar signals.
    Fuehrer PL; Friehe CA; Hristov TS; Cooper DI; Eichinger WE
    Appl Opt; 2000 Feb; 39(5):850-9. PubMed ID: 18337962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements.
    Bosser P; Bock O; Thom C; Pelon J
    Appl Opt; 2007 Nov; 46(33):8170-80. PubMed ID: 18026556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative-humidity profiling in the troposphere with a Raman lidar.
    Mattis I; Ansmann A; Althausen D; Jaenisch V; Wandinger U; Müller D; Arshinov YF; Bobrovnikov SM; Serikov IB
    Appl Opt; 2002 Oct; 41(30):6451-62. PubMed ID: 12396198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.
    Sica RJ; Haefele A
    Appl Opt; 2016 Feb; 55(4):763-77. PubMed ID: 26836078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient.
    Behrendt A; Nakamura T; Onishi M; Baumgart R; Tsuda T
    Appl Opt; 2002 Dec; 41(36):7657-66. PubMed ID: 12510935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary exploration of atmospheric water vapor, liquid water and ice water by ultraviolet Raman lidar.
    Yufeng W; Qing W; Dengxin H
    Opt Express; 2019 Dec; 27(25):36311-36328. PubMed ID: 31873413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.
    Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I
    Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive digital filter for the processing of atmospheric lidar signals measured by imaging lidar techniques.
    Liu Z; Yang C; Gong Z; Li H; Mei L
    Appl Opt; 2020 Oct; 59(30):9454-9463. PubMed ID: 33104663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system.
    Venable DD; Whiteman DN; Calhoun MN; Dirisu AO; Connell RM; Landulfo E
    Appl Opt; 2011 Aug; 50(23):4622-32. PubMed ID: 21833140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance modeling of an airborne Raman water-vapor lidar.
    Whiteman DN; Schwemmer G; Berkoff T; Plotkin H; Ramos-Izquierdo L; Pappalardo G
    Appl Opt; 2001 Jan; 40(3):375-90. PubMed ID: 18357011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.
    Liu B; Wang Z; Cai Y; Wechsler P; Kuestner W; Burkhart M; Welch W
    Opt Express; 2014 Aug; 22(17):20613-21. PubMed ID: 25321266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous analog and photon counting detection for Raman lidar.
    Newsom RK; Turner DD; Mielke B; Clayton M; Ferrare R; Sivaraman C
    Appl Opt; 2009 Jul; 48(20):3903-14. PubMed ID: 19593341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland.
    Larchevêque G; Balin I; Nessler R; Quaglia P; Simeonov V; van den Bergh H; Calpini B
    Appl Opt; 2002 May; 41(15):2781-90. PubMed ID: 12027164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba.
    Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T
    Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on an adaptive filter for the Mie lidar signal.
    Song Y; Zhou Y; Liu P; Shi G; Wang Y; Di H; Hua D
    Appl Opt; 2019 Jan; 58(1):62-68. PubMed ID: 30645513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere.
    Liu F; Yi F
    Appl Opt; 2013 Oct; 52(28):6884-95. PubMed ID: 24085202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements.
    Leblanc T; McDermid IS
    Appl Opt; 2008 Oct; 47(30):5592-603. PubMed ID: 18936807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Raman sounding of the earth's water vapor field.
    Tratt DM; Whiteman DN; Demoz BB; Farley RW; Wessel JE
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2335-41. PubMed ID: 16029854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal filtering technique for processing lidar photocount data.
    Gardner CS; Shelton JD
    Opt Lett; 1981 Apr; 6(4):174-6. PubMed ID: 19701366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.