These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 18338380)
1. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes. Hughes RK; Yousafzai FK; Ashton R; Chechetkin IR; Fairhurst SA; Hamberg M; Casey R Proteins; 2008 Sep; 72(4):1199-211. PubMed ID: 18338380 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Medicago truncatula (barrel medic) hydroperoxide lyase (CYP74C3), a water-soluble detergent-free cytochrome P450 monomer whose biological activity is defined by monomer-micelle association. Hughes RK; Belfield EJ; Muthusamay M; Khan A; Rowe A; Harding SE; Fairhurst SA; Bornemann S; Ashton R; Thorneley RN; Casey R Biochem J; 2006 May; 395(3):641-52. PubMed ID: 16454766 [TBL] [Abstract][Full Text] [Related]
3. CYP74C3 and CYP74A1, plant cytochrome P450 enzymes whose activity is regulated by detergent micelle association, and proposed new rules for the classification of CYP74 enzymes. Hughes RK; Belfield EJ; Casey R Biochem Soc Trans; 2006 Dec; 34(Pt 6):1223-7. PubMed ID: 17073790 [TBL] [Abstract][Full Text] [Related]
4. Determinants governing the CYP74 catalysis: conversion of allene oxide synthase into hydroperoxide lyase by site-directed mutagenesis. Toporkova YY; Gogolev YV; Mukhtarova LS; Grechkin AN FEBS Lett; 2008 Oct; 582(23-24):3423-8. PubMed ID: 18789329 [TBL] [Abstract][Full Text] [Related]
5. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Tijet N; Schneider C; Muller BL; Brash AR Arch Biochem Biophys; 2001 Feb; 386(2):281-9. PubMed ID: 11368353 [TBL] [Abstract][Full Text] [Related]
6. Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis. Toporkova YY; Gorina SS; Bessolitsyna EK; Smirnova EO; Fatykhova VS; Brühlmann F; Ilyina TM; Mukhtarova LS; Grechkin AN Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Apr; 1863(4):369-378. PubMed ID: 29325723 [TBL] [Abstract][Full Text] [Related]
7. Structure-function relationship in the CYP74 family: conversion of divinyl ether synthases into allene oxide synthases by site-directed mutagenesis. Toporkova YY; Ermilova VS; Gorina SS; Mukhtarova LS; Osipova EV; Gogolev YV; Grechkin AN FEBS Lett; 2013 Aug; 587(16):2552-8. PubMed ID: 23827817 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of 7-methoxyresorufin O-demethylation activity of human cytochrome P450 1A2 by molecular breeding. Kim D; Guengerich FP Arch Biochem Biophys; 2004 Dec; 432(1):102-8. PubMed ID: 15519301 [TBL] [Abstract][Full Text] [Related]
9. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of amino acid residues critical for unique activities of rabbit cytochrome P450 2B5 using hybrid enzymes and reciprocal site-directed mutagenesis with rabbit cytochrome P450 2B4. Szklarz GD; He YQ; Kedzie KM; Halpert JR; Burnett VL Arch Biochem Biophys; 1996 Mar; 327(2):308-18. PubMed ID: 8619620 [TBL] [Abstract][Full Text] [Related]
11. Molecular model of human CYP21 based on mammalian CYP2C5: structural features correlate with clinical severity of mutations causing congenital adrenal hyperplasia. Robins T; Carlsson J; Sunnerhagen M; Wedell A; Persson B Mol Endocrinol; 2006 Nov; 20(11):2946-64. PubMed ID: 16788163 [TBL] [Abstract][Full Text] [Related]
12. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling). Narasimhulu S Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838 [TBL] [Abstract][Full Text] [Related]
13. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches. Filiz E; Vatansever R; Ozyigit II Mol Biol Rep; 2016 Mar; 43(3):129-40. PubMed ID: 26852122 [TBL] [Abstract][Full Text] [Related]
14. Selection of human cytochrome P450 1A2 mutants with enhanced catalytic activity for heterocyclic amine N-hydroxylation. Kim D; Guengerich FP Biochemistry; 2004 Feb; 43(4):981-8. PubMed ID: 14744142 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of putative substrate recognition sites in cytochrome P450 2B11: importance of amino acid residues 114, 290, and 363 for substrate specificity. Hasler JA; Harlow GR; Szklarz GD; John GH; Kedzie KM; Burnett VL; He YA; Kaminsky LS; Halpert JR Mol Pharmacol; 1994 Aug; 46(2):338-45. PubMed ID: 8078495 [TBL] [Abstract][Full Text] [Related]
16. Green leaf divinyl ether synthase: gene detection, molecular cloning and identification of a unique CYP74B subfamily member. Gogolev YV; Gorina SS; Gogoleva NE; Toporkova YY; Chechetkin IR; Grechkin AN Biochim Biophys Acta; 2012 Feb; 1821(2):287-94. PubMed ID: 22155387 [TBL] [Abstract][Full Text] [Related]
18. Modelling human cytochromes P450 involved in drug metabolism from the CYP2C5 crystallographic template. Lewis DF J Inorg Biochem; 2002 Sep; 91(4):502-14. PubMed ID: 12237218 [TBL] [Abstract][Full Text] [Related]
19. An inhibitory monoclonal antibody binds in close proximity to a determinant for substrate binding in cytochrome P450IIC5. Kronbach T; Johnson EF J Biol Chem; 1991 Apr; 266(10):6215-20. PubMed ID: 1706711 [TBL] [Abstract][Full Text] [Related]
20. Homology modelling of CYP2A6 based on the CYP2C5 crystallographic template: enzyme-substrate interactions and QSARs for binding affinity and inhibition. Lewis DF; Lake BG; Dickins M; Goldfarb PS Toxicol In Vitro; 2003 Apr; 17(2):179-90. PubMed ID: 12650672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]