BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 18338534)

  • 1. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2008; 48(1):43-51. PubMed ID: 18338534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transient VEP-based real-time brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2009; 49(8):323-35. PubMed ID: 20058543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI.
    Müller-Putz GR; Eder E; Wriessnegger SC; Pfurtscheller G
    J Neurosci Methods; 2008 Feb; 168(1):174-81. PubMed ID: 17980917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.
    Jin J; Allison BZ; Wang X; Neuper C
    J Neurosci Methods; 2012 Apr; 205(2):265-76. PubMed ID: 22269596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An independent brain-computer interface using covert non-spatial visual selective attention.
    Zhang D; Maye A; Gao X; Hong B; Engel AK; Gao S
    J Neural Eng; 2010 Feb; 7(1):16010. PubMed ID: 20083864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs.
    Wu Z; Yao D
    J Neural Eng; 2008 Mar; 5(1):36-43. PubMed ID: 18310809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual spatial attention control in an independent brain-computer interface.
    Kelly SP; Lalor EC; Finucane C; McDarby G; Reilly RB
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1588-96. PubMed ID: 16189972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.
    Luo A; Sullivan TJ
    J Neural Eng; 2010 Apr; 7(2):26010. PubMed ID: 20332551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brain computer interface using flash visual evoked potential and independent component analysis.
    Lee PL; Hsieh JC; Wu CH; Shyu KK; Chen SS; Yeh TC; Wu YT
    Ann Biomed Eng; 2006 Oct; 34(10):1641-54. PubMed ID: 17029033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential.
    Tu T; Xin Y; Gao X; Gao S
    J Neural Eng; 2012 Feb; 9(1):016008. PubMed ID: 22183443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulator selection in SSVEP-based BCI.
    Wu Z; Lai Y; Xia Y; Wu D; Yao D
    Med Eng Phys; 2008 Oct; 30(8):1079-88. PubMed ID: 18316226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL; Yeh CL; Cheng JY; Yang CY; Lan GY
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3350-9. PubMed ID: 21788179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
    Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.